The present study investigated the effects of the multikinase inhibitor sorafenib on androgen-independent can- cer cells viability and intracellular signaling. Human androgen-independent PC-3 prostate cancer cells wer...The present study investigated the effects of the multikinase inhibitor sorafenib on androgen-independent can- cer cells viability and intracellular signaling. Human androgen-independent PC-3 prostate cancer cells were treated with sorafenib. At concentration that suppresses extracellular signal-regulated kinase phosphorylation, sorafenib treatment reduced the mitochondrial transmembrane potential. Sorafenib also down-modulated the levels of mye- loid cell leukemia 1, survivin and cellular inhibitor of apoptosis protein 2. Sorafenib induced caspase-3 cleavage and the mitochondrial release of cytochrome c. However, no nuclear translocation of apoptosis inducing factor was detected after treatment and the pan-caspase inhibitor Z-VAD-FMK had an obvious protective effect against the drug. In conclusion, sorafenib induces apoptosis through a caspase-dependent mechanism with down-regulated antiapoptotic proteins in androgen-independent prostate cancer cells in vitro.展开更多
Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were e...Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were established via subcutaneous injection of PC-3 cells and the tumor-transplanted mice were divided into 4 groups: control group and three ApoG2 treatment groups, with 10 mice in each group. Volumes of the tumor were estimated every 2 d and the morphology of tumor tissues was observed. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and caspase-8 in tumor tissues. Results: ApoG2 (2.5 mg/kg-10 mg/kg) given intraperitoneally once a day can obviously inhibit the growth of subcutaneous prostatic carcinoma implant. The tumor volume decreased obviously when the treatment dosage was bigger than 5.0 mg/kg (P<0.01). Meanwhile, ApoG2 decreased the expression of PCNA and CD31, and enhanced the expression of caspases-3, caspase-8 in tumor tissues. Conclusion: ApoG2 exert an inhibitory effect on prostatic carcinoma possibly by inducing apoptosis and inhibiting tumor angiogenesis.展开更多
Summary: To study the effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) on PC-3M cell line, PC-3M cell line was incubated with gradient concentrations of TRAIL for 4-24 h. Annixin-V fluoresc...Summary: To study the effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) on PC-3M cell line, PC-3M cell line was incubated with gradient concentrations of TRAIL for 4-24 h. Annixin-V fluorescence staining and TUNEL method were employed to detect the apoptosis of PC-3M cells. The morphology of apoptotic PC-3M cells was observed by electron microscopy. The relationship between TRAIL concentrations and the percentage of apoptotic cells was evaluated by flow cytometry. The proliferation inhibitory ratio was calculated by using MTT colorimetry. Our results showed that apoptosis of PC-3M cells could be induced by treatment with TRAIL for at most 4 h. The results of flow cytometry and MTT colorimetry demonstrated a time-and concentration-dependent relationship between cell apoptosis rate and TRAIL concentration. It is concluded that apoptosis of PC-3M cells can be induced by TRAIL. Because of the selective killing effect of TRAIL on tumor cells, it may become a potential alternative for the treatment of advanced prostate cancer.展开更多
Objective We transfected recombinant expression plasmid of pcDNA3. 1-HIF-1α into prostate cancer cells, to research effect of HIF-1α on proliferation of prostate cancer cell PC-3. Methods We selected a stable expres...Objective We transfected recombinant expression plasmid of pcDNA3. 1-HIF-1α into prostate cancer cells, to research effect of HIF-1α on proliferation of prostate cancer cell PC-3. Methods We selected a stable expression cell line with G418 we selected by transfection展开更多
Aim: To evaluate the antiproliferative activity of contragestazol (DL111-IT) on the human prostate cancer cell line PC3 in vitro and in vivo and to elucidate its potential molecular mechanisms. Methods: The cell k...Aim: To evaluate the antiproliferative activity of contragestazol (DL111-IT) on the human prostate cancer cell line PC3 in vitro and in vivo and to elucidate its potential molecular mechanisms. Methods: The cell killing ability of DL111-IT was measured by the 3-(4,5-dimethylthia-zol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent assay method and the tumor xenograft model. The cell cycle was analyzed by flow cytometry and protein expression, including retinoblastoma (pRb), cyclin-dependent kinase 4 (CDK4) and cyclin D 1, was detected by Western blotting. Results: DL111-IT exhibited high efficiency on cell growth inhibition of the human androgen-independent prostate cancer cell line PC3. The drug concentration that yielded 50 % cell inhibition (IC50 value) was 9.9 mg/mL. In the PC3 tumor xenograft study, DL111-IT (1.25 mg/kg-20.0 mg/kg) given once a day for 10 days significantly inhibited tumor growth, with the inhibition rate ranging from 21% to 50 %. Flow cytometric analysis indicated that DL111-IT could cause GI arrest in the PC3 cell line, but not apoptosis. DL111-IT enhanced pRb expression and down-regulated CDK4 and cyclin D 1 expression, suggesting that cell cycle regulation might contribute to the anticancer property of DL 111- IT. Conclusion: DL111-1T inhibits the proliferation of human androgen-independent prostate cancer cell line PC3 in vitro and in vivo by a cell cycle regulation pathway.展开更多
Objective To investigate the effect of IL-6 on prostatic carcinoma cell lines, and differential effects on androgen-dependent and androgen-independent prostatic carcinoma cells. Methods The IL-6 producing capacities o...Objective To investigate the effect of IL-6 on prostatic carcinoma cell lines, and differential effects on androgen-dependent and androgen-independent prostatic carcinoma cells. Methods The IL-6 producing capacities of LNCaP and PC-3 cells were determined, and effects of exogenous IL-6 and anti-IL - 6 antibodies on LNCaP and PC - 3 cells were examined. Results LNCaP produced a very small amount of IL-6, but PC-3 produced more, the concentraion of IL-6 being 190 pg/48 h per ml(1 × 106). The exogenous IL-6 inhibited LNCaP growth significantly,but had no obvious effect on PC -3 cells. Anti-IL-6 antibodies lowered PC-3 cells growth rate but had neutral effect on LNCaP. Conclusion PC-3 cells produces IL-6 massively in autocrine manner. IL-6 could be antagonized by anti-IL-6 antibodies,resulting in slowing PC-3 cells growth, and LNCaP cells growth could be inhibited by exogenous IL-6.7 refs,2 tabs.展开更多
Aim: To elucidate effects and mechanisms of emodin in prostate cancer cells. Methods: Viability of emodin-treated LNCaP cells and PC-3 cells was measured by MTT assay. Following emodin treatments, DNA fragmentation ...Aim: To elucidate effects and mechanisms of emodin in prostate cancer cells. Methods: Viability of emodin-treated LNCaP cells and PC-3 cells was measured by MTT assay. Following emodin treatments, DNA fragmentation was assayed by agarose gel electrophoresis. Apoptosis rate and the expression of Fas and FasL were assayed by flow cytometric analysis. The mRNA expression levels of androgen receptor (AR), prostate-specific antigen (PSA), p53, p21, Bcl-2, Bax, caspase-3, -8, -9 and Fas were detected by RT-PCR, and the protein expression levels of AR, p53 and p21 were detected by Western blot analysis. Results: In contrast to PC-3, emodin caused a marked increase in apoptosis and a decrease in cell proliferation in LNCaP cells. The expression of AR and PSA was decreased and the expression of p53 and p21 was increased as the emodin concentrations were increased. In the same time, emodin induced apoptosis of LNCaP cells through the upregulation of caspase-3 and -9, as well as the increase of Bax/Bcl-2 ratio. However, it did not involve modulation of Fas or caspase-8 protein expression. Conclusion: In prostate cancer cell line, LNCaP, emodin inhibites the proliferation by AR and p53-p21 pathways, and induces apoptosis via the mitochondrial pathway.展开更多
Aim: To investigate the possible role of manganese in the regulation of mitochondrial aconitase (mACON) activity human prostate carcinoma cell line PC-3 cells. Methods: The mACON enzymatic activities of human pros...Aim: To investigate the possible role of manganese in the regulation of mitochondrial aconitase (mACON) activity human prostate carcinoma cell line PC-3 cells. Methods: The mACON enzymatic activities of human prostate carcinoma cell line PC-3 cells were determined using a reduced nicotinamide adenine dinucleotide-coupled assay. Immunoblot and transient gene expression assays were used to study gene expression of the mACON. The putative response element for gene expression was identified using reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays. Results: In vitro study revealed that manganese chloride (MnCI2) treatment for 16 h inhibited the enzymatic activity of mACON, which induced the inhibition of citrate utility and cell proliferation of PC- 3 cells. Although results from transient gene expression assays showed that MnCI2 treatment upregulated gene translation by approximately 5-fold through the iron response element pathway, immunoblot and reporter assays showed that MnCl2 treatments inhibited protein and gene expression of mACON. This effect was reversed by cotreatment with ferric ammonium citrate. Additional reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays suggested that a putative metal response element in the promoter of the mACON gene was involved in the regulation of MnCh on the gene expression of mACON. Conclusion: These findings suggest that manganese acts as an antagonist of iron, disrupting the enzymatic activity and gene expression of mACON and citrate metabolism in the prostate.展开更多
Aim:To investigate the possible role of manganese in the regulation of mitochondrial aconitase(mACON)activity human prostate carcinoma cell line PC-3 cells.Methods:The mACON enzymatic activities of human prostate carc...Aim:To investigate the possible role of manganese in the regulation of mitochondrial aconitase(mACON)activity human prostate carcinoma cell line PC-3 cells.Methods:The mACON enzymatic activities of human prostate carcinoma cell line PC-3 cells were determined using a reduced nicotinamide adenine dmucleotide-coupled assay. Immunoblot and transient gene expression assays were used to study gene expression of the mACON.The putative response element for gene expression was identified using reporter assays with site-directed mutagenesis and electro- phoretic mobility-shift assays.Results:In vitro study revealed that manganese chloride(MnCl2)treatment for 16h inhibited the enzymatic activity of mACON,which induced the inhibition of citrate utility and cell proliferation of PC- 3 cells.Although results from transient gene expression assays showed that MnCl_2,treatment upregulated gene translation by approximately 5-fold through the iron response element pathway,immunoblot and reporter assays showed that MnCl_2 treatments inhibited protein and gene expression of mACON.This effect was reversed by co- treatment with fenic ammonium citrate.Additional reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays suggested that a putative metal response element in the promoter of the mACON gene was involved in the regulation of MnCl_2 on the gene expression of mACON.Conclusion:These findings suggest that manganese acts as an antagonist of iron,disrupting the enzymatic activity and gene expression of mACON and citrate metabolism in the prostate.展开更多
Objective: To investigate the therapeutic effect and the related mechanism of oridonin on mice with prostate cancer. Methods: Sixty BALB/C male nude mice were selected. A model of RM-1 cell transplantation tumor of pr...Objective: To investigate the therapeutic effect and the related mechanism of oridonin on mice with prostate cancer. Methods: Sixty BALB/C male nude mice were selected. A model of RM-1 cell transplantation tumor of prostate cancer was built by the subcutaneous inoculation of RM-1 cells. After that, those 60 experimental mice were randomly divided into groups A, B and C. Each group had 20 mice. Mice in group A were treated with 0.2 m L of normal saline(0.9%) by intraperitoneal injection once a day; mice in group B received intraperitoneal injection of 1.875 mg/m L of oridonin once a day; and mice in group C received intraperitoneal injection of 7.5 mg/m L of oridonin once a day. Mice in the three groups were treated uninterruptedly for 5 weeks and were all killed. Then, tumors were excised and weighed to calculate their growth inhibitory rate, volume increment and anti-tumor rate. Thymus and spleen of mice in the three groups were collected to calculate the thymus and spleen index. Immunohistochemical staining was applied to observe the expression of caspase-3 in prostate cancer tissue of mice of the three groups. Results: The qualities and volume increment of tumors in groups B and C were significantly lower than those of group A(P < 0.05); the qualities and volume increment of tumors in groups C were evidently lower than those of group B(P < 0.05); the tumor volume increment and anti-tumor rate in group C were obviously higher than those of group B(P < 0.05); the thymus and spleen indexes of groups B and C were distinctly higher than those of group A(P < 0.05); comparison of the thymus and spleen indexes between group B and group C showed no statistical differences(P > 0.05). Immumohistochemical staining revealed that the caspase-3 protein in prostate cancer tissue of mice of group A expressed negatively with colourless or light-colored karyon; while the caspase-3 protein in prostate cancer tissue of mice of group B expressed positively with dark-colored karyon, centralized distribution and granular sensation; and the caspase-3 in prostate cancer tissue of mice of group C showed strong positive expression with big and darker colored karyon and dense distribution. Conclusions: Oridonin can inhibit the growth of RM-1 prostate cancer cells effectively and have great therapeutic effects on RM-1 cell transplantation tumor of prostate cancer.展开更多
背景与目的:哺乳动物细胞中雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号途径调节细胞生长、增殖、存活和凋亡。本实验是研究雷帕霉素对前列腺癌PC-3细胞的作用及其机制。方法:培养前列腺癌PC-3细胞,采用MTT法检测雷帕霉素1...背景与目的:哺乳动物细胞中雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号途径调节细胞生长、增殖、存活和凋亡。本实验是研究雷帕霉素对前列腺癌PC-3细胞的作用及其机制。方法:培养前列腺癌PC-3细胞,采用MTT法检测雷帕霉素1nmol/L作用24h、36h、48h、72h后PC-3细胞增殖的改变,流式细胞术检测作用不同时间细胞周期的改变,Westernblot检测雷帕霉素作用PC-3细胞24h、36h、48h、72h后raptor、rictor、Akt、pS6k1-T389、pAkt-s473的表达情况。结果:MTT结果显示雷帕霉素在作用24h时,促进了PC-3细胞增殖,但在36h显著抑制PC-3细胞增殖(P<0.01),72h时抑制作用更明显。FCM结果显示雷帕霉素作用24h时S期细胞有所增加,但作用36、48、72h后PC-3细胞的G1期细胞逐渐增加,使PC-3细胞周期主要阻滞在G1期。Westernblot检测结果显示雷帕霉素作用24h时显著抑制raptor和pS6k1-T389的表达(P<0.01);rictor、Akt表达并没有显著变化;pAkt-s473表达在雷帕霉素作用24h时反而显著增加(P<0.01),但在36h后即被显著抑制,72h几乎完全被抑制(P<0.01)。结论:延长雷帕霉素作用时间可抑制PC-3细胞增殖,其机制可能与雷帕霉素阻滞细胞周期、抑制Akt磷酸化有关。展开更多
基金We thank Mr Wen-Tong Meng and Mr Ji-Long Gou (Stem Cell Research Laboratory, West China Hospital, Sichuan University, Chengdu, China) for technical assistance with the flow cytometry. We also thank BioMed Proofreading for their editing work. This work was supported by grants to Prof. Hao Zeng and Dr Rui Huang from the National Natural Science Foundation of China (NSFC 30700977 and 30600153).
文摘The present study investigated the effects of the multikinase inhibitor sorafenib on androgen-independent can- cer cells viability and intracellular signaling. Human androgen-independent PC-3 prostate cancer cells were treated with sorafenib. At concentration that suppresses extracellular signal-regulated kinase phosphorylation, sorafenib treatment reduced the mitochondrial transmembrane potential. Sorafenib also down-modulated the levels of mye- loid cell leukemia 1, survivin and cellular inhibitor of apoptosis protein 2. Sorafenib induced caspase-3 cleavage and the mitochondrial release of cytochrome c. However, no nuclear translocation of apoptosis inducing factor was detected after treatment and the pan-caspase inhibitor Z-VAD-FMK had an obvious protective effect against the drug. In conclusion, sorafenib induces apoptosis through a caspase-dependent mechanism with down-regulated antiapoptotic proteins in androgen-independent prostate cancer cells in vitro.
文摘Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were established via subcutaneous injection of PC-3 cells and the tumor-transplanted mice were divided into 4 groups: control group and three ApoG2 treatment groups, with 10 mice in each group. Volumes of the tumor were estimated every 2 d and the morphology of tumor tissues was observed. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and caspase-8 in tumor tissues. Results: ApoG2 (2.5 mg/kg-10 mg/kg) given intraperitoneally once a day can obviously inhibit the growth of subcutaneous prostatic carcinoma implant. The tumor volume decreased obviously when the treatment dosage was bigger than 5.0 mg/kg (P<0.01). Meanwhile, ApoG2 decreased the expression of PCNA and CD31, and enhanced the expression of caspases-3, caspase-8 in tumor tissues. Conclusion: ApoG2 exert an inhibitory effect on prostatic carcinoma possibly by inducing apoptosis and inhibiting tumor angiogenesis.
文摘Summary: To study the effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) on PC-3M cell line, PC-3M cell line was incubated with gradient concentrations of TRAIL for 4-24 h. Annixin-V fluorescence staining and TUNEL method were employed to detect the apoptosis of PC-3M cells. The morphology of apoptotic PC-3M cells was observed by electron microscopy. The relationship between TRAIL concentrations and the percentage of apoptotic cells was evaluated by flow cytometry. The proliferation inhibitory ratio was calculated by using MTT colorimetry. Our results showed that apoptosis of PC-3M cells could be induced by treatment with TRAIL for at most 4 h. The results of flow cytometry and MTT colorimetry demonstrated a time-and concentration-dependent relationship between cell apoptosis rate and TRAIL concentration. It is concluded that apoptosis of PC-3M cells can be induced by TRAIL. Because of the selective killing effect of TRAIL on tumor cells, it may become a potential alternative for the treatment of advanced prostate cancer.
文摘Objective We transfected recombinant expression plasmid of pcDNA3. 1-HIF-1α into prostate cancer cells, to research effect of HIF-1α on proliferation of prostate cancer cell PC-3. Methods We selected a stable expression cell line with G418 we selected by transfection
基金This study received financial support from the National Natural Science Foundation of China(No.30000209).
文摘Aim: To evaluate the antiproliferative activity of contragestazol (DL111-IT) on the human prostate cancer cell line PC3 in vitro and in vivo and to elucidate its potential molecular mechanisms. Methods: The cell killing ability of DL111-IT was measured by the 3-(4,5-dimethylthia-zol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent assay method and the tumor xenograft model. The cell cycle was analyzed by flow cytometry and protein expression, including retinoblastoma (pRb), cyclin-dependent kinase 4 (CDK4) and cyclin D 1, was detected by Western blotting. Results: DL111-IT exhibited high efficiency on cell growth inhibition of the human androgen-independent prostate cancer cell line PC3. The drug concentration that yielded 50 % cell inhibition (IC50 value) was 9.9 mg/mL. In the PC3 tumor xenograft study, DL111-IT (1.25 mg/kg-20.0 mg/kg) given once a day for 10 days significantly inhibited tumor growth, with the inhibition rate ranging from 21% to 50 %. Flow cytometric analysis indicated that DL111-IT could cause GI arrest in the PC3 cell line, but not apoptosis. DL111-IT enhanced pRb expression and down-regulated CDK4 and cyclin D 1 expression, suggesting that cell cycle regulation might contribute to the anticancer property of DL 111- IT. Conclusion: DL111-1T inhibits the proliferation of human androgen-independent prostate cancer cell line PC3 in vitro and in vivo by a cell cycle regulation pathway.
文摘Objective To investigate the effect of IL-6 on prostatic carcinoma cell lines, and differential effects on androgen-dependent and androgen-independent prostatic carcinoma cells. Methods The IL-6 producing capacities of LNCaP and PC-3 cells were determined, and effects of exogenous IL-6 and anti-IL - 6 antibodies on LNCaP and PC - 3 cells were examined. Results LNCaP produced a very small amount of IL-6, but PC-3 produced more, the concentraion of IL-6 being 190 pg/48 h per ml(1 × 106). The exogenous IL-6 inhibited LNCaP growth significantly,but had no obvious effect on PC -3 cells. Anti-IL-6 antibodies lowered PC-3 cells growth rate but had neutral effect on LNCaP. Conclusion PC-3 cells produces IL-6 massively in autocrine manner. IL-6 could be antagonized by anti-IL-6 antibodies,resulting in slowing PC-3 cells growth, and LNCaP cells growth could be inhibited by exogenous IL-6.7 refs,2 tabs.
基金This study was supported by the Natural Science Foundation of Shandong Province (No. Y2005C29) and the National Natural Science Foundation of China (No. 30470820 and No. 30670581).
文摘Aim: To elucidate effects and mechanisms of emodin in prostate cancer cells. Methods: Viability of emodin-treated LNCaP cells and PC-3 cells was measured by MTT assay. Following emodin treatments, DNA fragmentation was assayed by agarose gel electrophoresis. Apoptosis rate and the expression of Fas and FasL were assayed by flow cytometric analysis. The mRNA expression levels of androgen receptor (AR), prostate-specific antigen (PSA), p53, p21, Bcl-2, Bax, caspase-3, -8, -9 and Fas were detected by RT-PCR, and the protein expression levels of AR, p53 and p21 were detected by Western blot analysis. Results: In contrast to PC-3, emodin caused a marked increase in apoptosis and a decrease in cell proliferation in LNCaP cells. The expression of AR and PSA was decreased and the expression of p53 and p21 was increased as the emodin concentrations were increased. In the same time, emodin induced apoptosis of LNCaP cells through the upregulation of caspase-3 and -9, as well as the increase of Bax/Bcl-2 ratio. However, it did not involve modulation of Fas or caspase-8 protein expression. Conclusion: In prostate cancer cell line, LNCaP, emodin inhibites the proliferation by AR and p53-p21 pathways, and induces apoptosis via the mitochondrial pathway.
文摘Aim: To investigate the possible role of manganese in the regulation of mitochondrial aconitase (mACON) activity human prostate carcinoma cell line PC-3 cells. Methods: The mACON enzymatic activities of human prostate carcinoma cell line PC-3 cells were determined using a reduced nicotinamide adenine dinucleotide-coupled assay. Immunoblot and transient gene expression assays were used to study gene expression of the mACON. The putative response element for gene expression was identified using reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays. Results: In vitro study revealed that manganese chloride (MnCI2) treatment for 16 h inhibited the enzymatic activity of mACON, which induced the inhibition of citrate utility and cell proliferation of PC- 3 cells. Although results from transient gene expression assays showed that MnCI2 treatment upregulated gene translation by approximately 5-fold through the iron response element pathway, immunoblot and reporter assays showed that MnCl2 treatments inhibited protein and gene expression of mACON. This effect was reversed by cotreatment with ferric ammonium citrate. Additional reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays suggested that a putative metal response element in the promoter of the mACON gene was involved in the regulation of MnCh on the gene expression of mACON. Conclusion: These findings suggest that manganese acts as an antagonist of iron, disrupting the enzymatic activity and gene expression of mACON and citrate metabolism in the prostate.
文摘Aim:To investigate the possible role of manganese in the regulation of mitochondrial aconitase(mACON)activity human prostate carcinoma cell line PC-3 cells.Methods:The mACON enzymatic activities of human prostate carcinoma cell line PC-3 cells were determined using a reduced nicotinamide adenine dmucleotide-coupled assay. Immunoblot and transient gene expression assays were used to study gene expression of the mACON.The putative response element for gene expression was identified using reporter assays with site-directed mutagenesis and electro- phoretic mobility-shift assays.Results:In vitro study revealed that manganese chloride(MnCl2)treatment for 16h inhibited the enzymatic activity of mACON,which induced the inhibition of citrate utility and cell proliferation of PC- 3 cells.Although results from transient gene expression assays showed that MnCl_2,treatment upregulated gene translation by approximately 5-fold through the iron response element pathway,immunoblot and reporter assays showed that MnCl_2 treatments inhibited protein and gene expression of mACON.This effect was reversed by co- treatment with fenic ammonium citrate.Additional reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays suggested that a putative metal response element in the promoter of the mACON gene was involved in the regulation of MnCl_2 on the gene expression of mACON.Conclusion:These findings suggest that manganese acts as an antagonist of iron,disrupting the enzymatic activity and gene expression of mACON and citrate metabolism in the prostate.
基金supported by the National Natural Science Foundation with the number of 30700875/C03030310
文摘Objective: To investigate the therapeutic effect and the related mechanism of oridonin on mice with prostate cancer. Methods: Sixty BALB/C male nude mice were selected. A model of RM-1 cell transplantation tumor of prostate cancer was built by the subcutaneous inoculation of RM-1 cells. After that, those 60 experimental mice were randomly divided into groups A, B and C. Each group had 20 mice. Mice in group A were treated with 0.2 m L of normal saline(0.9%) by intraperitoneal injection once a day; mice in group B received intraperitoneal injection of 1.875 mg/m L of oridonin once a day; and mice in group C received intraperitoneal injection of 7.5 mg/m L of oridonin once a day. Mice in the three groups were treated uninterruptedly for 5 weeks and were all killed. Then, tumors were excised and weighed to calculate their growth inhibitory rate, volume increment and anti-tumor rate. Thymus and spleen of mice in the three groups were collected to calculate the thymus and spleen index. Immunohistochemical staining was applied to observe the expression of caspase-3 in prostate cancer tissue of mice of the three groups. Results: The qualities and volume increment of tumors in groups B and C were significantly lower than those of group A(P < 0.05); the qualities and volume increment of tumors in groups C were evidently lower than those of group B(P < 0.05); the tumor volume increment and anti-tumor rate in group C were obviously higher than those of group B(P < 0.05); the thymus and spleen indexes of groups B and C were distinctly higher than those of group A(P < 0.05); comparison of the thymus and spleen indexes between group B and group C showed no statistical differences(P > 0.05). Immumohistochemical staining revealed that the caspase-3 protein in prostate cancer tissue of mice of group A expressed negatively with colourless or light-colored karyon; while the caspase-3 protein in prostate cancer tissue of mice of group B expressed positively with dark-colored karyon, centralized distribution and granular sensation; and the caspase-3 in prostate cancer tissue of mice of group C showed strong positive expression with big and darker colored karyon and dense distribution. Conclusions: Oridonin can inhibit the growth of RM-1 prostate cancer cells effectively and have great therapeutic effects on RM-1 cell transplantation tumor of prostate cancer.
文摘背景与目的:哺乳动物细胞中雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号途径调节细胞生长、增殖、存活和凋亡。本实验是研究雷帕霉素对前列腺癌PC-3细胞的作用及其机制。方法:培养前列腺癌PC-3细胞,采用MTT法检测雷帕霉素1nmol/L作用24h、36h、48h、72h后PC-3细胞增殖的改变,流式细胞术检测作用不同时间细胞周期的改变,Westernblot检测雷帕霉素作用PC-3细胞24h、36h、48h、72h后raptor、rictor、Akt、pS6k1-T389、pAkt-s473的表达情况。结果:MTT结果显示雷帕霉素在作用24h时,促进了PC-3细胞增殖,但在36h显著抑制PC-3细胞增殖(P<0.01),72h时抑制作用更明显。FCM结果显示雷帕霉素作用24h时S期细胞有所增加,但作用36、48、72h后PC-3细胞的G1期细胞逐渐增加,使PC-3细胞周期主要阻滞在G1期。Westernblot检测结果显示雷帕霉素作用24h时显著抑制raptor和pS6k1-T389的表达(P<0.01);rictor、Akt表达并没有显著变化;pAkt-s473表达在雷帕霉素作用24h时反而显著增加(P<0.01),但在36h后即被显著抑制,72h几乎完全被抑制(P<0.01)。结论:延长雷帕霉素作用时间可抑制PC-3细胞增殖,其机制可能与雷帕霉素阻滞细胞周期、抑制Akt磷酸化有关。