Non-alcoholic fatty liver disease(NAFLD)is emerging as a common cause of chronic liver disease in children and adults.NAFLD can progress to steatohepa-titis and potentially even hepatocellular carcinoma.Early identifi...Non-alcoholic fatty liver disease(NAFLD)is emerging as a common cause of chronic liver disease in children and adults.NAFLD can progress to steatohepa-titis and potentially even hepatocellular carcinoma.Early identification of pati-ents at risk for progressive disease is crucial for managing NAFLD.Recent studies have identified long noncoding RNAs(lncRNAs),circular RNAs,and microRNAs as playing important roles in the pathogenesis of NAFLD.These noncoding RNAs are involved in modulating several metabolic pathways such as hepatic glucose and lipid metabolism,oxidative stress,and even carcinogenesis.Elevated levels of lncARSR and lncRNA nuclear-enriched abundant transcript 1 have been found in patients with NAFLD.In addition,lncRNAs such as PRYP4-3 and RP11-128N14.5 can distinguish patients with NAFLD from healthy indi-viduals.Increased MEG3 expression has been observed in both NAFLD and non-alcoholic steatohepatitis,suggesting that it may help predict patients at risk for disease progression.With advances in transcriptomics,we may discover additional targets to help in the identification and prognostication of NAFLD.展开更多
Objective:This study explores the mechanism of action of Danhongqing formula(DHQ),a compoundbased Chinese medicine formula,in the treatment of cholestatic liver fibrosis.Methods:In vivo experiments were conducted usin...Objective:This study explores the mechanism of action of Danhongqing formula(DHQ),a compoundbased Chinese medicine formula,in the treatment of cholestatic liver fibrosis.Methods:In vivo experiments were conducted using 8-week-old multidrug resistance protein 2 knockout(Mdr2-/-)mice as an animal model of cholestatic liver fibrosis.DHQ was administered orally for 8 weeks,and its impact on cholestatic liver fibrosis was evaluated by assessing liver function,liver histopathology,and the expression of liver fibrosis-related proteins.Real-time polymerase chain reaction,Western blot,immunohistochemistry and other methods were used to observe the effects of DHQ on long non-coding RNA H19(H19)and signal transducer and activator of transcription 3(STAT3)phosphorylation in the liver tissue of Mdr2-/-mice.In addition,cholangiocytes and hepatic stellate cells(HSCs)were cultured in vitro to measure the effects of bile acids on cholangiocyte injury and H19 expression.Cholangiocytes overexpressing H19 were constructed,and a conditioned medium containing H19 was collected to measure its effects on STAT3 protein expression and cell activation.The intervention effect of DHQ on these processes was also investigated.HSCs overexpressing H19 were constructed to measure the impact of H19 on cell activation and assess the intervention effect of DHQ.Results:DHQ alleviated liver injury,ductular reaction,and fibrosis in Mdr2-/-mice,and inhibited H19expression,STAT3 expression and STAT3 phosphorylation.This formula also reduced hydrophobic bile acid-induced cholangiocyte injury and the upregulation of H19,inhibited the activation of HSCs induced by cholangiocyte-derived conditioned medium,and decreased the expression of activation markers in HSCs.The overexpression of H19 in a human HSC line confirmed that H19 promoted STAT3 phosphorylation and HSC activation,and DHQ was able to successfully inhibit these effects.Conclusion:DHQ effectively alleviated spontaneous cholestatic liver fibrosis in Mdr2-/-mice by inhibiting H19 upregulation in cholangiocytes and preventing the inhibition of STAT3 phosphorylation in HSC,thereby suppressing cell activation.展开更多
文摘Non-alcoholic fatty liver disease(NAFLD)is emerging as a common cause of chronic liver disease in children and adults.NAFLD can progress to steatohepa-titis and potentially even hepatocellular carcinoma.Early identification of pati-ents at risk for progressive disease is crucial for managing NAFLD.Recent studies have identified long noncoding RNAs(lncRNAs),circular RNAs,and microRNAs as playing important roles in the pathogenesis of NAFLD.These noncoding RNAs are involved in modulating several metabolic pathways such as hepatic glucose and lipid metabolism,oxidative stress,and even carcinogenesis.Elevated levels of lncARSR and lncRNA nuclear-enriched abundant transcript 1 have been found in patients with NAFLD.In addition,lncRNAs such as PRYP4-3 and RP11-128N14.5 can distinguish patients with NAFLD from healthy indi-viduals.Increased MEG3 expression has been observed in both NAFLD and non-alcoholic steatohepatitis,suggesting that it may help predict patients at risk for disease progression.With advances in transcriptomics,we may discover additional targets to help in the identification and prognostication of NAFLD.
基金supported by grants from the National Natural Science Foundation of China(No.81773980)Project of Science and Technology Commission of Shanghai Municipality(No.15401902600)。
文摘Objective:This study explores the mechanism of action of Danhongqing formula(DHQ),a compoundbased Chinese medicine formula,in the treatment of cholestatic liver fibrosis.Methods:In vivo experiments were conducted using 8-week-old multidrug resistance protein 2 knockout(Mdr2-/-)mice as an animal model of cholestatic liver fibrosis.DHQ was administered orally for 8 weeks,and its impact on cholestatic liver fibrosis was evaluated by assessing liver function,liver histopathology,and the expression of liver fibrosis-related proteins.Real-time polymerase chain reaction,Western blot,immunohistochemistry and other methods were used to observe the effects of DHQ on long non-coding RNA H19(H19)and signal transducer and activator of transcription 3(STAT3)phosphorylation in the liver tissue of Mdr2-/-mice.In addition,cholangiocytes and hepatic stellate cells(HSCs)were cultured in vitro to measure the effects of bile acids on cholangiocyte injury and H19 expression.Cholangiocytes overexpressing H19 were constructed,and a conditioned medium containing H19 was collected to measure its effects on STAT3 protein expression and cell activation.The intervention effect of DHQ on these processes was also investigated.HSCs overexpressing H19 were constructed to measure the impact of H19 on cell activation and assess the intervention effect of DHQ.Results:DHQ alleviated liver injury,ductular reaction,and fibrosis in Mdr2-/-mice,and inhibited H19expression,STAT3 expression and STAT3 phosphorylation.This formula also reduced hydrophobic bile acid-induced cholangiocyte injury and the upregulation of H19,inhibited the activation of HSCs induced by cholangiocyte-derived conditioned medium,and decreased the expression of activation markers in HSCs.The overexpression of H19 in a human HSC line confirmed that H19 promoted STAT3 phosphorylation and HSC activation,and DHQ was able to successfully inhibit these effects.Conclusion:DHQ effectively alleviated spontaneous cholestatic liver fibrosis in Mdr2-/-mice by inhibiting H19 upregulation in cholangiocytes and preventing the inhibition of STAT3 phosphorylation in HSC,thereby suppressing cell activation.