Prostate cancer(PC)biomarker-citrate detection is clinically important to diagnose PC in early stages.Methylquinolinium iodide(Q)conjugated indole-phenylboronic acid(IB)was designed as a red-emissive QIB probe for the...Prostate cancer(PC)biomarker-citrate detection is clinically important to diagnose PC in early stages.Methylquinolinium iodide(Q)conjugated indole-phenylboronic acid(IB)was designed as a red-emissive QIB probe for the detection of citrate through Lewis acid-base reaction and intramolecular charge transfer(ICT)sensing mechanisms.Boronic acid acts as Lewis acid as well as citrate(Lewis base)recognition unit.The probe reacted with citrate,showing enhanced red emissions.Since the probe has excellent water solubility and great biocompatibility,practical application in biological systems is possible.Citrate was monitored precisely in the mitochondria organelle(in vitro)of living cells with a positive charge on QIB.Also,endogenous(in situ)citrate was detected quantitatively to discriminate non-cancerous and PC mice,observed strong and lower(negligible)emission intensity on non-cancerous and cancerous prostate tissues,respectively.Because,the concentration of citrate is higher in healthy prostate compared with PC prostate.Furthermore,the analysis of sliced prostate tissues can give PC-related information for clinical diagnosis to prevent and treat PC in the initial stages.Therefore,we believe that the present probe is a promising biochemical reagent in diagnosing PC.展开更多
Objective To explore the expression of novel protein kinase C ε ( PKCε) in normal prostate ( NP) tissue, benign prostate hyperplasia ( BPH) ,pericancerous ( PC) tissue and prostate cancer ( Pca) ,and study its corre...Objective To explore the expression of novel protein kinase C ε ( PKCε) in normal prostate ( NP) tissue, benign prostate hyperplasia ( BPH) ,pericancerous ( PC) tissue and prostate cancer ( Pca) ,and study its correlation with the grade and stage of Pca. Methods Ten NP slides,ten BPH slides,ten PC slides and 43 Pca展开更多
Prostate cancer is the most common malignancy in men lack of efficient early diagnosis and therapeutics,calling for effective molecular probes.Herein,we performed cell-based systematic evolution of ligands by exponent...Prostate cancer is the most common malignancy in men lack of efficient early diagnosis and therapeutics,calling for effective molecular probes.Herein,we performed cell-based systematic evolution of ligands by exponential enrichment(cell-SELEX) to obtain specific recognition of human prostate cancer cells PC-3M.Four aptamers were successfully obtained that can bind to target cells with high affinity and specificity.A 51-nt truncated sequence named Xq-2-C1 was identified after further elaborative analysis on the secondary structure.More importantly,the achieved aptamer Xq-2-C1 not only demonstrated excellent specific to target cells,but also revealed specific recognition to clinical prostate cancer tissue.The tissue imaging results showed that Xq-2-C1 had better recognition ratio for clinical prostate cancer tissue samples(85%) compared to the random sequence(9%).These results demonstrate that these newly generated aptamers would furnish potential applications in the early diagnosis and clinical treatment of prostate cancer.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22150410327)the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(No.2020R1A2C1102741).
文摘Prostate cancer(PC)biomarker-citrate detection is clinically important to diagnose PC in early stages.Methylquinolinium iodide(Q)conjugated indole-phenylboronic acid(IB)was designed as a red-emissive QIB probe for the detection of citrate through Lewis acid-base reaction and intramolecular charge transfer(ICT)sensing mechanisms.Boronic acid acts as Lewis acid as well as citrate(Lewis base)recognition unit.The probe reacted with citrate,showing enhanced red emissions.Since the probe has excellent water solubility and great biocompatibility,practical application in biological systems is possible.Citrate was monitored precisely in the mitochondria organelle(in vitro)of living cells with a positive charge on QIB.Also,endogenous(in situ)citrate was detected quantitatively to discriminate non-cancerous and PC mice,observed strong and lower(negligible)emission intensity on non-cancerous and cancerous prostate tissues,respectively.Because,the concentration of citrate is higher in healthy prostate compared with PC prostate.Furthermore,the analysis of sliced prostate tissues can give PC-related information for clinical diagnosis to prevent and treat PC in the initial stages.Therefore,we believe that the present probe is a promising biochemical reagent in diagnosing PC.
文摘Objective To explore the expression of novel protein kinase C ε ( PKCε) in normal prostate ( NP) tissue, benign prostate hyperplasia ( BPH) ,pericancerous ( PC) tissue and prostate cancer ( Pca) ,and study its correlation with the grade and stage of Pca. Methods Ten NP slides,ten BPH slides,ten PC slides and 43 Pca
基金supported by the National Natural Science Foundation of China(Nos.21175035,21275043,21190040)the National Basic Research Program(No.2011CB911002)the Hunan Province Science and Technology Project of China(No.2013FJ4042)
文摘Prostate cancer is the most common malignancy in men lack of efficient early diagnosis and therapeutics,calling for effective molecular probes.Herein,we performed cell-based systematic evolution of ligands by exponential enrichment(cell-SELEX) to obtain specific recognition of human prostate cancer cells PC-3M.Four aptamers were successfully obtained that can bind to target cells with high affinity and specificity.A 51-nt truncated sequence named Xq-2-C1 was identified after further elaborative analysis on the secondary structure.More importantly,the achieved aptamer Xq-2-C1 not only demonstrated excellent specific to target cells,but also revealed specific recognition to clinical prostate cancer tissue.The tissue imaging results showed that Xq-2-C1 had better recognition ratio for clinical prostate cancer tissue samples(85%) compared to the random sequence(9%).These results demonstrate that these newly generated aptamers would furnish potential applications in the early diagnosis and clinical treatment of prostate cancer.