Shoulder disarticulation amputees account for a small portion of upper-limb amputees,thus little emphasis has been devoted to developing functional prosthesis for this cohort of amputees.In this study,shoulder girdle ...Shoulder disarticulation amputees account for a small portion of upper-limb amputees,thus little emphasis has been devoted to developing functional prosthesis for this cohort of amputees.In this study,shoulder girdle recognition was investigated with acquired data from electrophysiological(electromyography[EMG])and low frequency contraction(accelerometer[Acc])signals from both amputee and non-amputee participants.The contribution of this study is based around the contrast of the classification accuracy(CA)for different sensor configurations using a unique set of signal features.It was seen that the fusion of the EMG-Acc produced an enhancement in the CA in the range of 10%-20%,depending on which windowing parameters were considered.From this,it was seen that the best combination of a windowing scheme and classifier would likely be for the 350 ms and spectral regression discriminant analysis,with a fusion of the EMG-Acc information.The results have thus provided evidence that the two sensors can be combined and used in practice for prosthesis control.Taking a holistic view on the study,the authors conclude by providing a framework on how the shoulder motion recognition could be combined with neuromuscular reprogramming to contribute towards easing the cognitive burden of amputees during the prosthesis control process.展开更多
Numerous clinical and research applications necessitate the ability to interface with peripheral nerve fibers to read and control relevant neural pathways. Visceral organ modulation and rehabilitative prosthesis are t...Numerous clinical and research applications necessitate the ability to interface with peripheral nerve fibers to read and control relevant neural pathways. Visceral organ modulation and rehabilitative prosthesis are two areas which could benefit greatly from improved neural interfacing approaches. Therapeutic neural interfacing, or ‘bioelectronic medicine’, has potential to affect a broad range of disorders given that all the major organs of the viscera are neurally innervated. However, a better understanding of the neural pathways that underlie function and a means to precisely interface with these fibers are required. Existing peripheral nerve interfaces, consisting primarily of electrode-based designs, are unsuited for highly specific (individual axon) communication and/or are invasive to the tissue. Our laboratory has explored an optogenetic approach by which optically sensitive reporters and actuators are targeted to specific cell (axon) types. The nature of such an approach is laid out in this short perspective, along with associated technologies and challenges.展开更多
文摘Shoulder disarticulation amputees account for a small portion of upper-limb amputees,thus little emphasis has been devoted to developing functional prosthesis for this cohort of amputees.In this study,shoulder girdle recognition was investigated with acquired data from electrophysiological(electromyography[EMG])and low frequency contraction(accelerometer[Acc])signals from both amputee and non-amputee participants.The contribution of this study is based around the contrast of the classification accuracy(CA)for different sensor configurations using a unique set of signal features.It was seen that the fusion of the EMG-Acc produced an enhancement in the CA in the range of 10%-20%,depending on which windowing parameters were considered.From this,it was seen that the best combination of a windowing scheme and classifier would likely be for the 350 ms and spectral regression discriminant analysis,with a fusion of the EMG-Acc information.The results have thus provided evidence that the two sensors can be combined and used in practice for prosthesis control.Taking a holistic view on the study,the authors conclude by providing a framework on how the shoulder motion recognition could be combined with neuromuscular reprogramming to contribute towards easing the cognitive burden of amputees during the prosthesis control process.
基金financially supported in part by funds administered through VA Eastern Colorado Health Care System-Denver VA Medical Centerfunds from the NIH SPARC initiative administered through the Office of the Director:1OT2OD023852-01
文摘Numerous clinical and research applications necessitate the ability to interface with peripheral nerve fibers to read and control relevant neural pathways. Visceral organ modulation and rehabilitative prosthesis are two areas which could benefit greatly from improved neural interfacing approaches. Therapeutic neural interfacing, or ‘bioelectronic medicine’, has potential to affect a broad range of disorders given that all the major organs of the viscera are neurally innervated. However, a better understanding of the neural pathways that underlie function and a means to precisely interface with these fibers are required. Existing peripheral nerve interfaces, consisting primarily of electrode-based designs, are unsuited for highly specific (individual axon) communication and/or are invasive to the tissue. Our laboratory has explored an optogenetic approach by which optically sensitive reporters and actuators are targeted to specific cell (axon) types. The nature of such an approach is laid out in this short perspective, along with associated technologies and challenges.