Understanding interactions between viruses and their hosts is conducive to enabling better application of viruses as biocontrol agents.Certain viruses carried by parasitic wasps enhance the parasitic efficiency of was...Understanding interactions between viruses and their hosts is conducive to enabling better application of viruses as biocontrol agents.Certain viruses carried by parasitic wasps enhance the parasitic efficiency of wasp-larvae by protecting them against the immune system of their Lepidopteran host.However,the relationship between prey pests and viruses found in predatory natural enemies remains unclear.Herein,we report the interaction between Arma chinensis virus-1(AcV-1),originally isolated from a predatory natural enemy,Arma chinensis(Hemiptera:Pentatomidae),and one of its prey species,Spodoptera frugiperda(Lepidoptera:Noctuidae).The results showed that the AcV-1 virus appeared harmful to the novel host S.frugiperda by inhibiting larval diet consumption and increasing pupal mortality.Meanwhile,sequencing data indicated that the virus altered the gene expression profiles of S.frugiperda.KEGG analysis showed that the proteasome and phagosome pathways related to protein degradation and immune response were significantly enriched.Although the expression levels of digestive enzyme genes did not change significantly,the total protease activity of AcV-1 virus-positive individuals was significantly decreased,suggesting that the virus inhibited diet consumption of S.frugiperda via the down-regulation of digestive enzyme activities.These results indicate that a virus initially isolated in a predatory natural enemy can decrease the fitness of its prey species.The virus was found to impact the host proteasome and phagosome pathways related to protein degradation and immunity,providing a potential mechanism to enhance controlling efficiency.展开更多
Dry-cured meat products are considerably popular around the world due to unique flavor.Proteolysis is one of the enzymatic reactions from which flavor substances are derived,which is affected by endogenous proteases.T...Dry-cured meat products are considerably popular around the world due to unique flavor.Proteolysis is one of the enzymatic reactions from which flavor substances are derived,which is affected by endogenous proteases.The purpose aimed to reveal the potential relationship between endogenous proteases and key flavor substances in dry-cured pork coppa in this paper.The dynamic changes of endogenous proteases activity,free amino acids,and volatiles during dry-cured pork coppa processing were characterized.The results showed that 5 kinds of free amino acids,Glu,Lys,Val,Ala,and Leu,were identified as significant contributors to taste.Meanwhile,key volatiles,such as hexanal,nonanal,octanal,benzaldehyde,3-methyl butanoic acid,2-methyl propanoic acid,and ethyl octanoate,greatly contributed to the flavor characteristics of dry-cured pork coppa.Further partial correlation analysis was performed to better elucidate the relationship among parameters.The results revealed that close relationship between endogenous proteases and key substances.RAP not only significantly affected the accumulation of key active-amino acids,but also affected the accumulation of ethyl octanoate,2,3-pentanedione,and 2,3-octanedione by regulating the accumulation of octanoic acid and Leu.In addition,cathepsin B and D,DPP II,DPP IV and RAP notably affected accumulation of hexanal.展开更多
BACKGROUND Colorectal cancer(CRC)is one very usual tumor together with higher death rate.Ubiquitin-specific protease 21(USP21)has been confirmed to take part into the regulation of CRC progression through serving as a...BACKGROUND Colorectal cancer(CRC)is one very usual tumor together with higher death rate.Ubiquitin-specific protease 21(USP21)has been confirmed to take part into the regulation of CRC progression through serving as a facilitator.Interestingly,the promotive function of USP21 has also discovered in the progression of CRC.ZEB1 has illustrated to be modulated by USP7,USP22 and USP51 in cancers.However,the regulatory functions of USP21 on ZEB1 in CRC progression need more invest-igations.AIM To investigate the relationship between USP21 and ZEB1 in CRC progression.METHODS The mRNA and protein expressions were assessed through RT-qPCR,western blot and IHC assay.The interaction between USP21 and ZEB1 was evaluated through Co-IP and GST pull down assays.The cell proliferation was detected through colony formation assay.The cell migration and invasion abilities were determined through Transwell assay.The stemness was tested through sphere formation assay.The tumor growth was evaluated through in vivo mice assay.RESULTS In this work,USP21 and ZEB1 exhibited higher expression in CRC,and resulted into poor prognosis.Moreover,the interaction between USP21 and ZEB1 was further investigated.It was demonstrated that USP21 contributed to the stability of ZEB1 through modulating ubiquitination level.In addition,USP21 streng-thened cell proliferation,migration and stemness through regulating ZEB1.At last,through in vivo assays,it was illustrated that USP21/ZEB1 axis aggravated tumor growth.CONCLUSION For the first time,these above findings manifested that USP21 promoted tumorigenicity and stemness of CRC by deubiquitinating and stabilizing ZEB1.This discovery suggested that USP21/ZEB1 axis may provide novel sights for the treatment of CRC.展开更多
The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1...The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1 contains the receptor-binding domain(RBD),while the S2 contains the hydrophobic fusion domain for the entry into the host cell.Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various c leavage sites.In this article,we review host proteases including furin,trypsin,transmembrane protease serine 2(TMPRSS2)and cathepsins in the activation of SARS-CoV-2 S.Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin.The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2,and the binding triggers further conformational changes and exposure of the S2'site to proteases such as type Il transmembrane serine proteases(TTPRs)including TMPRSS2.In the presence of TMPRSS2 on the target cells,SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane.In the absence of TMPRSS2,SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry.Additional host proteases involved in the cleavage of the S were discussed.This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2,and discussed the dual roles of such inhibitors in virus replication.展开更多
BACKGROUND Recent advancements in biliary tract cancer(BTC)treatment have expanded beyond surgery to include adjuvant therapy,yet the prognosis remains poor.Identifying prognostic biomarkers could enhance the assessme...BACKGROUND Recent advancements in biliary tract cancer(BTC)treatment have expanded beyond surgery to include adjuvant therapy,yet the prognosis remains poor.Identifying prognostic biomarkers could enhance the assessment of patients who have undergone radical resection for BTC.AIM To determine transmembrane serine protease 4(TMPRSS4)utility as a prognostic biomarker of radical resection for BTC.METHODS Medical records of patients who underwent radical resection for BTC,excluding intrahepatic cholangiocarcinoma,were retrospectively reviewed.The associations between TMPRSS4 expression and clinicopathological factors,overall survival,and recurrence-free survival were analyzed.RESULTS Among the 85 patients undergoing radical resection for BTC,46(54%)were TMPRSS4-positive.The TMPRSS4-positive group exhibited significantly higher preoperative carbohydrate antigen 19-9(CA19-9)values and greater lymphatic invasion than the TMPRSS4-negative group(P=0.019 and 0.039,respectively).Postoperative overall survival and recurrence-free survival were significantly worse in the TMPRSS4-positive group(median survival time:25.3 months vs not reached,P<0.001;median survival time:28.7 months vs not reached,P=0.043,respectively).Multivariate overall survival analysis indicated TMPRSS4 positivity,pT3/T4,and resection status R1 were independently associated with poor prognosis(P=0.032,0.035 and 0.030,respectively).TMPRSS4 positivity correlated with preoperative CA19-9 values≥37 U/mL and pathological tumor size≥30 mm(P=0.016 and 0.038,respectively).CONCLUSION TMPRSS4 is a potential prognostic biomarker of radical resection for BTC.展开更多
Natural nano-hydroxyapatite(HA)was extracted from Pacific cod(Gadus macrocephalus)bone with a thermostable col-lagenolytic protease in the present study.Conditions for the enzymatic reaction were optimized to be 60℃a...Natural nano-hydroxyapatite(HA)was extracted from Pacific cod(Gadus macrocephalus)bone with a thermostable col-lagenolytic protease in the present study.Conditions for the enzymatic reaction were optimized to be 60℃and pH 7.0,and a desir-able extraction efficiency was achieved by using the crude collagenolytic protease.Dynamic light scattering,transmission electron microscopy and energy-dispersive X-ray analysis revealed that nano-HA are anionic spherical(about 110nm)particles mainly com-prised of calcium and phosphorus at an approximate ratio of 5:3.As evaluated with the mouse ex vivo intestinal segments,the extracted nano-HA displayed comparable level of intestinal bioavailability to the positive control CaCl_(2).By treating with inhibitors(NaN3,ami-loride)and low temperature(4℃),clathrin-mediated endocytosis was assumed to involve the intestinal absorption of nano-HA.Over-all,the application of thermostable collagenolytic protease is proved to be a promising alternative method for nano-HA extraction from natural resource with improved ecological and biological value.展开更多
Protease inhibitors promote herbivore resistance in diverse plant species.Although many inducible protease inhibitors have been identified,there are limited reports available on the biological relevance and molecular ...Protease inhibitors promote herbivore resistance in diverse plant species.Although many inducible protease inhibitors have been identified,there are limited reports available on the biological relevance and molecular basis of constitutive protease inhibitors in herbivore resistance.Here,we identified a serine protease inhibitor,CsSERPIN1,from the tea plant(Camellia sinensis).Expression of CsSERPIN1 was not strongly affected by the assessed biotic and abiotic stresses.In vitro and in vivo experiments showed that CsSERPIN1 strongly inhibited the activities of digestive protease activities of trypsin and chymotrypsin.Transient or heterologous expression of CsSERPIN1 significantly reduced herbivory by two destructive herbivores,the tea geometrid and fall armyworm,in tea and Arabidopsis plants,respectively.The expression of CsSERPIN1 in Arabidopsis did not negatively influence the growth of the plants under the measured parameters.Our findings suggest that CsSERPIN1 can inactivate gut digestive proteases and suppress the growth and development of herbivores,making it a promising candidate for pest prevention in agriculture.展开更多
One of plant-based products for dental care is plant-based proteolytic enzymes which are principally proteases. In order not to damage the protein and bioactive content, an efficient method should be employed for thei...One of plant-based products for dental care is plant-based proteolytic enzymes which are principally proteases. In order not to damage the protein and bioactive content, an efficient method should be employed for their purifications. As such, three-phase partitioning (TPP) was used to purify protease from moringa (Moringa oleifera). TPP is an emerging, promising, non-chromatographic and economical technology which is simple, quick, efficient and often one-step process for the separation and purification of bioactive molecules from natural sources. It involves the addition of salt (ammonium sulphate) to the crude extract followed by the addition of an organic solvent (butanol). The protein appears as an interfacial precipitate between upper organic solvent and lower aqueous phases. The various conditions such as ammonium sulphate, ratio of crude extract to t-butanol and pH which are required for attaining efficient purification of the protease fractions were optimized. Under optimized conditions, it was seen that, 35% of ammonium sulphate saturation with 1:0.75 ratio of crude extract to t-butanol at pH 7 gave 4.94-fold purification with 96.20% activity yield of protease in the middle phase of the TPP system. The purified enzyme from Moringa oleifera has no antimicrobial effect on the pathogenic bacteria tested. However, this purified enzyme, can be considered as a promising agent, cheap, and safe source which is suitable for using in various industries.展开更多
In this study, a gene encoding serine protease(PmSpr288)from cold-adapted bacterium, namely Planococcus maritimus XJ11, was cloned and overexpressed in Escherichia coli BL21(DE3). Bioinformatics analysis revealed that...In this study, a gene encoding serine protease(PmSpr288)from cold-adapted bacterium, namely Planococcus maritimus XJ11, was cloned and overexpressed in Escherichia coli BL21(DE3). Bioinformatics analysis revealed that PmSpr288 belongs to serine protease S8 superfamily with a classical catalytic triad comprised by the Asp49, His86 and Ser251. Moreover, PmSpr288 was found to be active over broad alkaline pH and low-moderate temperature, and exhibited wide range of protein substrate specificity. In addition, PmSpr288 was able to hydrolyze the meat proteins actin and myosin, and molecular docking results suggested that the crucial interaction between PmSpr288 and actin/myosin complexes was mainly occupied by hydrogen bonds. The muscle protein hydrolysates of silver carp prepared by PmSpr288 was shown to have antioxidant activity via DPPH radical scavenging assay, which presented an IC_(50) valve of 1.309 mg/mL. In conclusion, these characteristics imply that PmSpr288 has potential biotechnological application prospect for the production of bioactive peptides.展开更多
The serine proteases of Mycobacteria tuberculosis(Mtb)are important contributors to the process of bacterial invasion and its pathogenesis.In the present study,we systematically characterized the role of the Rv1043c p...The serine proteases of Mycobacteria tuberculosis(Mtb)are important contributors to the process of bacterial invasion and its pathogenesis.In the present study,we systematically characterized the role of the Rv1043c protein in Mycobacterium infection by purifying the Rv1043c protein in Escherichia coli and constructing a Mycobacterium smegmatis(Msg)strain overexpressing Rv1043c(Msg_Rv1043c).We found that Rv1043c had serine protease activity and localized to the surface of Mtb.We determined that the optimal pH and temperature for the Rv1043c serine protease were 9.0 and 45°C,respectively.Moreover,the serine protease activity of Rv1043c was enhanced by divalent metal ions of Ca^(2+)and Mg^(2+).Site-directed mutagenesis studies demonstrated that the serine 279 residue in Rv1043c plays a catalytic role.Additionally,mouse model studies confirmed that Rv1043c significantly enhanced the survival of Msg in vivo,induced pulmonary injury and lung cell apoptosis,and promoted the release of pro-inflammatory cytokines interleukin-1βand interleukin-6 in mice.This study presents novel insights into the relationship between mycobacterial serine protease and the pathogenesis of the disease.展开更多
Potato protease inhibitors(PPIs),as the main component of potato protein isolate,have good safety,nutrition and great market potential.The antioxidant and anticancer properties of PPIs were evaluated with cellbased bi...Potato protease inhibitors(PPIs),as the main component of potato protein isolate,have good safety,nutrition and great market potential.The antioxidant and anticancer properties of PPIs were evaluated with cellbased biological assays.The results showed that when the concentration of PPIs was 5 mg/mL,the peroxyl radical scavenging value was(2119±204)mg VCE/100 g,and the cellular antioxidant activity values were(45.83±3.5)(no PBS wash)and(33.25±4.4)μmol QE/100 g(PBS wash).Cells pretreated with PPIs could significantly prevent the oxidative damage induced by H_(2)O_(2),inhibit the morphological changes of cells and maintain the integrity.Furthermore,PPIs had selective anti-proliferative effects on GIST882 cells(IC50=(10.53±3.87)mg/mL)and demonstrated potent inhibition of the growth,migration and invasion of cancer cells.These findings provide a scientific basis for PPIs as promising candidates for functional foods to aid in the prevention of oxidative damage and cancer.展开更多
Female adults of the migratory locust,Locusta migratoria manilensis(Meyen),can sense seasonal photoperiod changes,which induces embryonic diapause as a key strategy to overwinter.Serine protease inhibitor genes(SPNs)w...Female adults of the migratory locust,Locusta migratoria manilensis(Meyen),can sense seasonal photoperiod changes,which induces embryonic diapause as a key strategy to overwinter.Serine protease inhibitor genes(SPNs)were thought to play key roles during diapause,while few SPNs were functionally characterized.LmSPN2 was one of those genes differentially expressed between diapause and non-diapause eggs;however,its biological function remained to be explored.So,we conducted RNAi knockdown of LmSPN2,resulting in a significant decrease of the egg diapause rate by 29.7%.Using yeast two-hybrid assays,co-immunoprecipitation,and pull-down methods,we found an interaction between LmSPN2 and LmSPN3,which was proved to be mediated by a glutamate(E331)binding site of LmSPN2.RNAi knockdown of LmSPN3 resulted in a significant increase in diapause rate by 14.6%,indicating an inverse function of LmSPN2 and LmSPN3 on diapause regulation.Double knockdown of two SPN genes resulted in a 26.4%reduction in diapause rate,indicating that LmSPN2 was the dominant regulatory signal.Moreover,we found four Toll pathway genes(easter,spätzle,pelle,and dorsal)upregulated significantly after the knockdown of LmSPN2 while downregulated after the knockdown of LmSPN3.Therefore,we speculate that two SPNs regulate diapause through the Toll pathway.Our results indicated that LmSPN2 positively regulates locust egg entry into diapause,while LmSPN3 is a negative regulator of embryonic commitment to diapause.Their interaction is mediated by the binding site of E331 and influences egg diapause through the Toll pathway.This mechanistic understanding of diapause regulation expands our understanding of insect developmental regulation and provides functional targets for developing locust management strategies.展开更多
This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instan...This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.展开更多
Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and...Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and metastasis.However,conventional two-dimensional cell culture and animal models have limitations in studying the influence of tumor microenvironment on cancer cell migration.Fortunately,the further development of microfluidic technology has provided solutions for the study of such questions.We utilize microfluidic chip to build a random collagen fiber microenvironment(RFM)model and an oriented collagen fiber microenvironment(OFM)model that resemble early stage and late stage breast cancer microenvironments,respectively.By combining cell culture,biochemical concentration gradient construction,and microscopic imaging techniques,we investigate the impact of different collagen fiber biochemical microenvironments on the migration of breast cancer MDA-MB-231-RFP cells.The results show that MDA-MB-231-RFP cells migrate further in the OFM model compared to the RFM model,with significant differences observed.Furthermore,we establish concentration gradients of the anticancer drug paclitaxel in both the RFM and OFM models and find that paclitaxel significantly inhibits the migration of MDA-MB-231-RFP cells in the RFM model,with stronger inhibition on the high concentration side compared to the low concentration side.However,the inhibitory effect of paclitaxel on the migration of MDA-MB-231-RFP cells in the OFM model is weak.These findings suggest that the oriented collagen fiber microenvironment resembling the late-stage tumor microenvironment is more favorable for cancer cell migration and that the effectiveness of anticancer drugs is diminished.The RFM and OFM models constructed in this study not only provide a platform for studying the mechanism of cancer development,but also serve as a tool for the initial measurement of drug screening.展开更多
Bone collagen hydrolysates(peptides)derived from byproduct of animal product processing have been used to produce commercially valuable products due to their potential antioxidant activity.Maillard glycosylated reacti...Bone collagen hydrolysates(peptides)derived from byproduct of animal product processing have been used to produce commercially valuable products due to their potential antioxidant activity.Maillard glycosylated reaction is considered as a promising method to enhance the antioxidant activity of peptides.Hence,this research aims at investigating the Maillard glycosylation activity and antioxidant activity of bone collagen hydrolysates from different sources.In this study,3 glycosylated bone collagen hydrolysates were prepared and characterized,and cytotoxicity and antioxidant activity were analyzed and evaluated.The free amino groups loss,browning intensity,and fluorescence intensity of G-Cbcp(glycosylated chicken bone collagen hydrolysates(peptides))were the heaviest,followed by G-Pbcp(glycosylated porcine bone collagen hydrolysates(peptides))and G-Bbcp(glycosylated bovine bone collagen hydrolysates(peptides)).The results of amino acid analysis showed that amino acid composition of different bone collagen hydrolysates was significantly different and the amino acid decreased to different degrees after Maillard glycosylated reaction,which may lead to differences in Maillard glycosylated reaction activity.Furthermore,the 3 glycosylated hydrolysates showed no significant cytotoxicity.The results showed that glycosylation process significantly increased the antioxidant activity of bone collagen hydrolysates,and G-Cbcp showed the strongest antioxidant activity,followed by G-Pbcp and G-Bbcp.Therefore,compared with the bone collagen hydrolysates,3 glycosylated hydrolysates showed significant characteristic and structural changes,and higher antioxidant activity.展开更多
AIM:To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid(α-KG)on scleral collagen expression.METHODS:Meta-analysis and clinical statistics were used to prove the cha...AIM:To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid(α-KG)on scleral collagen expression.METHODS:Meta-analysis and clinical statistics were used to prove the changes in choroidal thickness(ChT)during myopia.The establishment of a hypoxic myopia model(HYP)for rabbit scleral fibroblasts through hypoxic culture and the effects of hypoxia andα-KG on collagen expression were demonstrated by Sirius red staining.Transcriptome analysis was used to verify the genes and pathways that hypoxia andα-KG affect collagen expression.Finally,real-time quantitative reverse transcription polymerase chain reaction(RT-qPCR)was used for reverse verification.RESULTS:Meta-analysis results aligned with clinical statistics,revealing a thinning of ChT,leading to scleral hypoxia.Sirius red staining indicated lower collagen expression in the HYP group and higher collagen expression in the HYP+α-KG group,showed that hypoxia reduced collagen expression in scleral fibroblasts,whileα-KG can elevated collagen expression under HYP conditions.Transcriptome analysis unveiled the related genes and signaling pathways of hypoxia andα-KG affect scleral collagen expression and the results were verified by RT-qPCR.CONCLUSION:The potential molecular mechanisms through which hypoxia andα-KG influencing myopia is unraveled and three novel genes TLCD4,TBC1D4,and EPHX3 are identified.These findings provide a new perspective on the prevention and treatment of myopia via regulating collagen expression.展开更多
Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present si...Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present significant challenges.In this study,we report a CFM@UiO-66-NH_(2)membrane with high separation flux,efficiency and stability,through utilizing a robust anti-abrasion collagen fiber membrane(CFM)as the multifunctional support and UiO-66-NH_(2)by an in-situ growth as the separation layer.The high mechanical strength of the CFM compensated for the weakness of the separation layer,while the charge-breaking effect of UiO-66-NH_(2),along with the size sieving of its constituent separating layers and the capillary effect of the collagen fibers,contributed to the potential for efficient separation.Additionally,the CFM@UiO-66-NH_(2)membrane exhibited superhydrophilic properties,making it suitable for separating oil-in-water microemulsions and nanoemulsions stabilized by anionic surfactants.The membrane demonstrated remarkable separation efficiencies of up to 99.960%and a separation flux of370.05 L·m^(-2)·h^(-1).Moreover,it exhibits stability,durability,and abrasion resistance,maintaining excellent separation performance even when exposed to strong acids and alkalis without any damage to its structure and performance.After six cycles of reuse,it achieved a separation flux of 417.97 L·m^(-2)·h^(-1)and a separation efficiency of 99.747%.Furthermore,after undergoing 500 cycles of strong abrasion,the separation flux remained at 124.39 L·m^(-2)·h^(-1),with a separation efficiency of 99.992%.These properties make it suitable for the long-term use in harsh operating environments.We attribute these properties to the electrostatic effect resulting from the amino group on UiO-66-NH_(2)and its in-situ growth on the CFM,which forms a size-screening separation layer.Our work highlights the potential of the CFM@UiO-66-NH_(2)membrane as an environmentally friendly size-screening material for the efficient emulsion wastewater separation.展开更多
Objective To investigate the effects of acupotomy on skeletal muscle fibrosis and collagen deposition in a rabbit knee osteoarthritis(KOA)model.Methods Rabbits(n=18)were randomly divided into control,KOA,and KOA+acupo...Objective To investigate the effects of acupotomy on skeletal muscle fibrosis and collagen deposition in a rabbit knee osteoarthritis(KOA)model.Methods Rabbits(n=18)were randomly divided into control,KOA,and KOA+acupotomy(Apo)groups(n=6).The rabbits in the KOA and Apo groups were modeled using the modified Videman's method for 6 weeks.After modeling,the Apo group was subjected to acupotomy once a week for 3 weeks on the vastus medialis,vastus lateralis,rectus femoris,biceps femoris,and anserine bursa tendons around the knee.The behavior of all animals was recorded,rectus femoris tissue was obtained,and histomorphological changes were observed using Masson staining and transmission electron microscopy.The expression of transforming growth factor-β1(TGF-β1),Smad 3,Smad 7,fibrillar collagen types I(Col-I)and III(Col-III)was detected using Western blot and real-time polymerase chain reaction(RT-PCR).Results Histological analysis revealed that acupotomy improved the microstructure and reduced the collagen volume fraction of rectus femoris,compared with the KOA group(P=.034).Acupotomy inhibited abnormal collagen deposition by modulating the expression of fibrosis-related proteins and mRNA,thus preventing skeletal muscle fibrosis.Western blot and RT-PCR analysis revealed that in the Apo group,Col-I,and Col-III protein levels were significantly lower than those in the KOA group(both P<.01),same as Col-I and Col-III mRNA levels(P=.0031;P=.0046).Compared with the KOA group,the protein levels of TGF-β1 and Smad 3 were significantly reduced(both P<.01),as were the mRNA levels of TGF-β1 and Smad 3(P=.0007;P=.0011).Conversely,the levels of protein and mRNA of Smad 7 were significantly higher than that in the KOA group(P<.01;P=.0271).Conclusion Acupotomy could alleviate skeletal muscle fibrosis and delay KOA progress by inhibiting collagen deposition through the TGF-β/Smad pathway in the skeletal muscle of KOA rabbits.展开更多
Studying the skin care efficacy of recombinant humanized collagen based on in vitro level.The stability of the recombinant humanized collagen was first analyzed by treating at different temperatures,then its skincare ...Studying the skin care efficacy of recombinant humanized collagen based on in vitro level.The stability of the recombinant humanized collagen was first analyzed by treating at different temperatures,then its skincare efficacy based on in vitro level was evaluated by detecting the inhibition rate of elastase,the inhibition rate of collagenase,the protein content of type I collagen in human fibroblasts,the inhibition of reactive oxygen species(ROS)with human keratinocytes,and the effects of the recombinant humanized collagen on the expression of hyaluronic acid(HA),filaggrin(FLG)and transglutaminase 1(TGM1)in keratinocytes.The results showed that recombinant humanized collagen was able to maintain stability at temperatures below 70℃.With regard to its skincare efficacy,recombinant humanized collagen could inhibit elastase and collagenase activities and promote the increase of type I collagen content in human fibroblasts.It also showed good inhibition of ROS in keratinocytes in vitro and could increase the expression of HA,FLG,and TGM1 in keratinocytes.In short,the recombinant humanized collagen exhibited a favourable skin care effect in vitro level.This study proved that it has potential firming,anti-wrinkle,moisturizing,and repairing efficacy,and is a valuable cosmetic raw material.展开更多
基金supported by the Major Special Projects for Green Pest Control,China(110202101028(LS-03),201938,110202201017(LS-01)and 110202001035(LS04))the National Natural Science Foundation of China(31901893)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(ASTIP-TRIC04)。
文摘Understanding interactions between viruses and their hosts is conducive to enabling better application of viruses as biocontrol agents.Certain viruses carried by parasitic wasps enhance the parasitic efficiency of wasp-larvae by protecting them against the immune system of their Lepidopteran host.However,the relationship between prey pests and viruses found in predatory natural enemies remains unclear.Herein,we report the interaction between Arma chinensis virus-1(AcV-1),originally isolated from a predatory natural enemy,Arma chinensis(Hemiptera:Pentatomidae),and one of its prey species,Spodoptera frugiperda(Lepidoptera:Noctuidae).The results showed that the AcV-1 virus appeared harmful to the novel host S.frugiperda by inhibiting larval diet consumption and increasing pupal mortality.Meanwhile,sequencing data indicated that the virus altered the gene expression profiles of S.frugiperda.KEGG analysis showed that the proteasome and phagosome pathways related to protein degradation and immune response were significantly enriched.Although the expression levels of digestive enzyme genes did not change significantly,the total protease activity of AcV-1 virus-positive individuals was significantly decreased,suggesting that the virus inhibited diet consumption of S.frugiperda via the down-regulation of digestive enzyme activities.These results indicate that a virus initially isolated in a predatory natural enemy can decrease the fitness of its prey species.The virus was found to impact the host proteasome and phagosome pathways related to protein degradation and immunity,providing a potential mechanism to enhance controlling efficiency.
基金financially supported by the National Natural Science Foundation of China(32001728,32172248)the Taishan Industrial Experts Program+1 种基金the Guizhou High-level Innovative Talent Training Project(Qianke Cooperation Platform Talent number[2016]5662)Guizhou Science and Technology Innovation Talent Team of Ecological Characteristic Meat Products.(QKHPTRC[2020]5004)。
文摘Dry-cured meat products are considerably popular around the world due to unique flavor.Proteolysis is one of the enzymatic reactions from which flavor substances are derived,which is affected by endogenous proteases.The purpose aimed to reveal the potential relationship between endogenous proteases and key flavor substances in dry-cured pork coppa in this paper.The dynamic changes of endogenous proteases activity,free amino acids,and volatiles during dry-cured pork coppa processing were characterized.The results showed that 5 kinds of free amino acids,Glu,Lys,Val,Ala,and Leu,were identified as significant contributors to taste.Meanwhile,key volatiles,such as hexanal,nonanal,octanal,benzaldehyde,3-methyl butanoic acid,2-methyl propanoic acid,and ethyl octanoate,greatly contributed to the flavor characteristics of dry-cured pork coppa.Further partial correlation analysis was performed to better elucidate the relationship among parameters.The results revealed that close relationship between endogenous proteases and key substances.RAP not only significantly affected the accumulation of key active-amino acids,but also affected the accumulation of ethyl octanoate,2,3-pentanedione,and 2,3-octanedione by regulating the accumulation of octanoic acid and Leu.In addition,cathepsin B and D,DPP II,DPP IV and RAP notably affected accumulation of hexanal.
基金Anhui Provincial Health Research Project,No.AHWJ2022c036.
文摘BACKGROUND Colorectal cancer(CRC)is one very usual tumor together with higher death rate.Ubiquitin-specific protease 21(USP21)has been confirmed to take part into the regulation of CRC progression through serving as a facilitator.Interestingly,the promotive function of USP21 has also discovered in the progression of CRC.ZEB1 has illustrated to be modulated by USP7,USP22 and USP51 in cancers.However,the regulatory functions of USP21 on ZEB1 in CRC progression need more invest-igations.AIM To investigate the relationship between USP21 and ZEB1 in CRC progression.METHODS The mRNA and protein expressions were assessed through RT-qPCR,western blot and IHC assay.The interaction between USP21 and ZEB1 was evaluated through Co-IP and GST pull down assays.The cell proliferation was detected through colony formation assay.The cell migration and invasion abilities were determined through Transwell assay.The stemness was tested through sphere formation assay.The tumor growth was evaluated through in vivo mice assay.RESULTS In this work,USP21 and ZEB1 exhibited higher expression in CRC,and resulted into poor prognosis.Moreover,the interaction between USP21 and ZEB1 was further investigated.It was demonstrated that USP21 contributed to the stability of ZEB1 through modulating ubiquitination level.In addition,USP21 streng-thened cell proliferation,migration and stemness through regulating ZEB1.At last,through in vivo assays,it was illustrated that USP21/ZEB1 axis aggravated tumor growth.CONCLUSION For the first time,these above findings manifested that USP21 promoted tumorigenicity and stemness of CRC by deubiquitinating and stabilizing ZEB1.This discovery suggested that USP21/ZEB1 axis may provide novel sights for the treatment of CRC.
基金National Institutes of Health(NIH)(grants R01 A/130092 and Al161085).
文摘The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1 contains the receptor-binding domain(RBD),while the S2 contains the hydrophobic fusion domain for the entry into the host cell.Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various c leavage sites.In this article,we review host proteases including furin,trypsin,transmembrane protease serine 2(TMPRSS2)and cathepsins in the activation of SARS-CoV-2 S.Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin.The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2,and the binding triggers further conformational changes and exposure of the S2'site to proteases such as type Il transmembrane serine proteases(TTPRs)including TMPRSS2.In the presence of TMPRSS2 on the target cells,SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane.In the absence of TMPRSS2,SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry.Additional host proteases involved in the cleavage of the S were discussed.This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2,and discussed the dual roles of such inhibitors in virus replication.
文摘BACKGROUND Recent advancements in biliary tract cancer(BTC)treatment have expanded beyond surgery to include adjuvant therapy,yet the prognosis remains poor.Identifying prognostic biomarkers could enhance the assessment of patients who have undergone radical resection for BTC.AIM To determine transmembrane serine protease 4(TMPRSS4)utility as a prognostic biomarker of radical resection for BTC.METHODS Medical records of patients who underwent radical resection for BTC,excluding intrahepatic cholangiocarcinoma,were retrospectively reviewed.The associations between TMPRSS4 expression and clinicopathological factors,overall survival,and recurrence-free survival were analyzed.RESULTS Among the 85 patients undergoing radical resection for BTC,46(54%)were TMPRSS4-positive.The TMPRSS4-positive group exhibited significantly higher preoperative carbohydrate antigen 19-9(CA19-9)values and greater lymphatic invasion than the TMPRSS4-negative group(P=0.019 and 0.039,respectively).Postoperative overall survival and recurrence-free survival were significantly worse in the TMPRSS4-positive group(median survival time:25.3 months vs not reached,P<0.001;median survival time:28.7 months vs not reached,P=0.043,respectively).Multivariate overall survival analysis indicated TMPRSS4 positivity,pT3/T4,and resection status R1 were independently associated with poor prognosis(P=0.032,0.035 and 0.030,respectively).TMPRSS4 positivity correlated with preoperative CA19-9 values≥37 U/mL and pathological tumor size≥30 mm(P=0.016 and 0.038,respectively).CONCLUSION TMPRSS4 is a potential prognostic biomarker of radical resection for BTC.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR202102270334)the National Key Research and Development Program of China(No.2020YFD0901004).
文摘Natural nano-hydroxyapatite(HA)was extracted from Pacific cod(Gadus macrocephalus)bone with a thermostable col-lagenolytic protease in the present study.Conditions for the enzymatic reaction were optimized to be 60℃and pH 7.0,and a desir-able extraction efficiency was achieved by using the crude collagenolytic protease.Dynamic light scattering,transmission electron microscopy and energy-dispersive X-ray analysis revealed that nano-HA are anionic spherical(about 110nm)particles mainly com-prised of calcium and phosphorus at an approximate ratio of 5:3.As evaluated with the mouse ex vivo intestinal segments,the extracted nano-HA displayed comparable level of intestinal bioavailability to the positive control CaCl_(2).By treating with inhibitors(NaN3,ami-loride)and low temperature(4℃),clathrin-mediated endocytosis was assumed to involve the intestinal absorption of nano-HA.Over-all,the application of thermostable collagenolytic protease is proved to be a promising alternative method for nano-HA extraction from natural resource with improved ecological and biological value.
基金We thank Prof.Liang Chen for insightful input and valuable scientific suggestions,Prof.Dr Xinchao Wang,Lu Wang and Yuchun Wang for kindly supplying experimental materials,Xiwang Li and Jianying Jin for looking after the insects and plants.This research was supported by National Natural Science Foundation of China(31272053,31901898)Central Public-interest Scientific Institution Basal Research Fund(Y2023PT03,1610212019001)the Elite Youth Program of Chinese Academy of Agricultural Sciences for Meng Ye.
文摘Protease inhibitors promote herbivore resistance in diverse plant species.Although many inducible protease inhibitors have been identified,there are limited reports available on the biological relevance and molecular basis of constitutive protease inhibitors in herbivore resistance.Here,we identified a serine protease inhibitor,CsSERPIN1,from the tea plant(Camellia sinensis).Expression of CsSERPIN1 was not strongly affected by the assessed biotic and abiotic stresses.In vitro and in vivo experiments showed that CsSERPIN1 strongly inhibited the activities of digestive protease activities of trypsin and chymotrypsin.Transient or heterologous expression of CsSERPIN1 significantly reduced herbivory by two destructive herbivores,the tea geometrid and fall armyworm,in tea and Arabidopsis plants,respectively.The expression of CsSERPIN1 in Arabidopsis did not negatively influence the growth of the plants under the measured parameters.Our findings suggest that CsSERPIN1 can inactivate gut digestive proteases and suppress the growth and development of herbivores,making it a promising candidate for pest prevention in agriculture.
文摘One of plant-based products for dental care is plant-based proteolytic enzymes which are principally proteases. In order not to damage the protein and bioactive content, an efficient method should be employed for their purifications. As such, three-phase partitioning (TPP) was used to purify protease from moringa (Moringa oleifera). TPP is an emerging, promising, non-chromatographic and economical technology which is simple, quick, efficient and often one-step process for the separation and purification of bioactive molecules from natural sources. It involves the addition of salt (ammonium sulphate) to the crude extract followed by the addition of an organic solvent (butanol). The protein appears as an interfacial precipitate between upper organic solvent and lower aqueous phases. The various conditions such as ammonium sulphate, ratio of crude extract to t-butanol and pH which are required for attaining efficient purification of the protease fractions were optimized. Under optimized conditions, it was seen that, 35% of ammonium sulphate saturation with 1:0.75 ratio of crude extract to t-butanol at pH 7 gave 4.94-fold purification with 96.20% activity yield of protease in the middle phase of the TPP system. The purified enzyme from Moringa oleifera has no antimicrobial effect on the pathogenic bacteria tested. However, this purified enzyme, can be considered as a promising agent, cheap, and safe source which is suitable for using in various industries.
基金supported by China Agriculture Research System of MOF and MARA,CARS-46。
文摘In this study, a gene encoding serine protease(PmSpr288)from cold-adapted bacterium, namely Planococcus maritimus XJ11, was cloned and overexpressed in Escherichia coli BL21(DE3). Bioinformatics analysis revealed that PmSpr288 belongs to serine protease S8 superfamily with a classical catalytic triad comprised by the Asp49, His86 and Ser251. Moreover, PmSpr288 was found to be active over broad alkaline pH and low-moderate temperature, and exhibited wide range of protein substrate specificity. In addition, PmSpr288 was able to hydrolyze the meat proteins actin and myosin, and molecular docking results suggested that the crucial interaction between PmSpr288 and actin/myosin complexes was mainly occupied by hydrogen bonds. The muscle protein hydrolysates of silver carp prepared by PmSpr288 was shown to have antioxidant activity via DPPH radical scavenging assay, which presented an IC_(50) valve of 1.309 mg/mL. In conclusion, these characteristics imply that PmSpr288 has potential biotechnological application prospect for the production of bioactive peptides.
基金This research was supported by the National Key Research and Development Program of China(2021YFD1800403)the National Natural Science Foundation of China(32273005 and 32002256).
文摘The serine proteases of Mycobacteria tuberculosis(Mtb)are important contributors to the process of bacterial invasion and its pathogenesis.In the present study,we systematically characterized the role of the Rv1043c protein in Mycobacterium infection by purifying the Rv1043c protein in Escherichia coli and constructing a Mycobacterium smegmatis(Msg)strain overexpressing Rv1043c(Msg_Rv1043c).We found that Rv1043c had serine protease activity and localized to the surface of Mtb.We determined that the optimal pH and temperature for the Rv1043c serine protease were 9.0 and 45°C,respectively.Moreover,the serine protease activity of Rv1043c was enhanced by divalent metal ions of Ca^(2+)and Mg^(2+).Site-directed mutagenesis studies demonstrated that the serine 279 residue in Rv1043c plays a catalytic role.Additionally,mouse model studies confirmed that Rv1043c significantly enhanced the survival of Msg in vivo,induced pulmonary injury and lung cell apoptosis,and promoted the release of pro-inflammatory cytokines interleukin-1βand interleukin-6 in mice.This study presents novel insights into the relationship between mycobacterial serine protease and the pathogenesis of the disease.
基金supported by the Science and Technology Mission Project of Liaoning Province Science and Technology Council(2021JH5/10400016)the Service Local Project of Liaoning Provincial Committee of Education(LSNFW202002)the Science and Technology Mission Project of Shenyang Science and Technology Council(20-207-3-25)。
文摘Potato protease inhibitors(PPIs),as the main component of potato protein isolate,have good safety,nutrition and great market potential.The antioxidant and anticancer properties of PPIs were evaluated with cellbased biological assays.The results showed that when the concentration of PPIs was 5 mg/mL,the peroxyl radical scavenging value was(2119±204)mg VCE/100 g,and the cellular antioxidant activity values were(45.83±3.5)(no PBS wash)and(33.25±4.4)μmol QE/100 g(PBS wash).Cells pretreated with PPIs could significantly prevent the oxidative damage induced by H_(2)O_(2),inhibit the morphological changes of cells and maintain the integrity.Furthermore,PPIs had selective anti-proliferative effects on GIST882 cells(IC50=(10.53±3.87)mg/mL)and demonstrated potent inhibition of the growth,migration and invasion of cancer cells.These findings provide a scientific basis for PPIs as promising candidates for functional foods to aid in the prevention of oxidative damage and cancer.
基金This work was supported by the National Key R&D Program of China(2022YFD1400500)the China Agriculture Research System of MOF and MARA(CARS-34-07)+1 种基金the Publicinterest Scientific Institution Basal Research Fund,China(Y2022GH12)the Central Public-interest Scientific Institution Basal Research Fund,China(S2021XM22 and S2022XM21)。
文摘Female adults of the migratory locust,Locusta migratoria manilensis(Meyen),can sense seasonal photoperiod changes,which induces embryonic diapause as a key strategy to overwinter.Serine protease inhibitor genes(SPNs)were thought to play key roles during diapause,while few SPNs were functionally characterized.LmSPN2 was one of those genes differentially expressed between diapause and non-diapause eggs;however,its biological function remained to be explored.So,we conducted RNAi knockdown of LmSPN2,resulting in a significant decrease of the egg diapause rate by 29.7%.Using yeast two-hybrid assays,co-immunoprecipitation,and pull-down methods,we found an interaction between LmSPN2 and LmSPN3,which was proved to be mediated by a glutamate(E331)binding site of LmSPN2.RNAi knockdown of LmSPN3 resulted in a significant increase in diapause rate by 14.6%,indicating an inverse function of LmSPN2 and LmSPN3 on diapause regulation.Double knockdown of two SPN genes resulted in a 26.4%reduction in diapause rate,indicating that LmSPN2 was the dominant regulatory signal.Moreover,we found four Toll pathway genes(easter,spätzle,pelle,and dorsal)upregulated significantly after the knockdown of LmSPN2 while downregulated after the knockdown of LmSPN3.Therefore,we speculate that two SPNs regulate diapause through the Toll pathway.Our results indicated that LmSPN2 positively regulates locust egg entry into diapause,while LmSPN3 is a negative regulator of embryonic commitment to diapause.Their interaction is mediated by the binding site of E331 and influences egg diapause through the Toll pathway.This mechanistic understanding of diapause regulation expands our understanding of insect developmental regulation and provides functional targets for developing locust management strategies.
基金granted by the National Key R&D Program of China (2021YFD21001005)National Natural Science Foundation of China (31972102,32101980)+1 种基金Special key project of Chongqing technology innovation and application development (cstc2021jscx-cylhX0014)Chongqing Technology Innovation and Application Development Special Project (cstc2021jscx-tpyzxX0014)。
文摘This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.
基金support from the National Natural Science Foundation of China(Grant Nos.11974066,12174041,12104134,T2350007,and 12347178)the Fundamental and Advanced Research Program of Chongqing(Grant No.cstc2019jcyj-msxm X0477)+3 种基金the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQMSX1260)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202301333)the Scientific Research Fund of Chongqing University of Arts and Sciences(Grant Nos.R2023HH03 and P2022HH05)College Students’Innovation and Entrepreneurship Training Program of Chongqing Municipal(Grant No.S202310642002)。
文摘Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and metastasis.However,conventional two-dimensional cell culture and animal models have limitations in studying the influence of tumor microenvironment on cancer cell migration.Fortunately,the further development of microfluidic technology has provided solutions for the study of such questions.We utilize microfluidic chip to build a random collagen fiber microenvironment(RFM)model and an oriented collagen fiber microenvironment(OFM)model that resemble early stage and late stage breast cancer microenvironments,respectively.By combining cell culture,biochemical concentration gradient construction,and microscopic imaging techniques,we investigate the impact of different collagen fiber biochemical microenvironments on the migration of breast cancer MDA-MB-231-RFP cells.The results show that MDA-MB-231-RFP cells migrate further in the OFM model compared to the RFM model,with significant differences observed.Furthermore,we establish concentration gradients of the anticancer drug paclitaxel in both the RFM and OFM models and find that paclitaxel significantly inhibits the migration of MDA-MB-231-RFP cells in the RFM model,with stronger inhibition on the high concentration side compared to the low concentration side.However,the inhibitory effect of paclitaxel on the migration of MDA-MB-231-RFP cells in the OFM model is weak.These findings suggest that the oriented collagen fiber microenvironment resembling the late-stage tumor microenvironment is more favorable for cancer cell migration and that the effectiveness of anticancer drugs is diminished.The RFM and OFM models constructed in this study not only provide a platform for studying the mechanism of cancer development,but also serve as a tool for the initial measurement of drug screening.
基金supported by the National Natural Science Foundation of China(32101883)Fellowship China Postdoctoral Science Foundation(2021M693902)National Agricultural Science and Technology Innovation Project(CAAS-ASTIP-2022)。
文摘Bone collagen hydrolysates(peptides)derived from byproduct of animal product processing have been used to produce commercially valuable products due to their potential antioxidant activity.Maillard glycosylated reaction is considered as a promising method to enhance the antioxidant activity of peptides.Hence,this research aims at investigating the Maillard glycosylation activity and antioxidant activity of bone collagen hydrolysates from different sources.In this study,3 glycosylated bone collagen hydrolysates were prepared and characterized,and cytotoxicity and antioxidant activity were analyzed and evaluated.The free amino groups loss,browning intensity,and fluorescence intensity of G-Cbcp(glycosylated chicken bone collagen hydrolysates(peptides))were the heaviest,followed by G-Pbcp(glycosylated porcine bone collagen hydrolysates(peptides))and G-Bbcp(glycosylated bovine bone collagen hydrolysates(peptides)).The results of amino acid analysis showed that amino acid composition of different bone collagen hydrolysates was significantly different and the amino acid decreased to different degrees after Maillard glycosylated reaction,which may lead to differences in Maillard glycosylated reaction activity.Furthermore,the 3 glycosylated hydrolysates showed no significant cytotoxicity.The results showed that glycosylation process significantly increased the antioxidant activity of bone collagen hydrolysates,and G-Cbcp showed the strongest antioxidant activity,followed by G-Pbcp and G-Bbcp.Therefore,compared with the bone collagen hydrolysates,3 glycosylated hydrolysates showed significant characteristic and structural changes,and higher antioxidant activity.
基金Supported by the Natural Science Foundation of Shandong Province,China(No.ZR2023MA069)the Medical and Health Technology Development Project of Shandong Province,China(No.202202050602)+1 种基金College Students’Innovation and Entrepreneurship Training Program(No.S202410438017)the Graduate Student Research Grant from Shandong Second Medical University.
文摘AIM:To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid(α-KG)on scleral collagen expression.METHODS:Meta-analysis and clinical statistics were used to prove the changes in choroidal thickness(ChT)during myopia.The establishment of a hypoxic myopia model(HYP)for rabbit scleral fibroblasts through hypoxic culture and the effects of hypoxia andα-KG on collagen expression were demonstrated by Sirius red staining.Transcriptome analysis was used to verify the genes and pathways that hypoxia andα-KG affect collagen expression.Finally,real-time quantitative reverse transcription polymerase chain reaction(RT-qPCR)was used for reverse verification.RESULTS:Meta-analysis results aligned with clinical statistics,revealing a thinning of ChT,leading to scleral hypoxia.Sirius red staining indicated lower collagen expression in the HYP group and higher collagen expression in the HYP+α-KG group,showed that hypoxia reduced collagen expression in scleral fibroblasts,whileα-KG can elevated collagen expression under HYP conditions.Transcriptome analysis unveiled the related genes and signaling pathways of hypoxia andα-KG affect scleral collagen expression and the results were verified by RT-qPCR.CONCLUSION:The potential molecular mechanisms through which hypoxia andα-KG influencing myopia is unraveled and three novel genes TLCD4,TBC1D4,and EPHX3 are identified.These findings provide a new perspective on the prevention and treatment of myopia via regulating collagen expression.
基金supported by National Natural Science Foundation of China(22008035,22108040,22378066)Science and Technology Project of Environmental Protection in Fujian(2022R026)Natural Science Foundation of Fujian Province(2020J05131,2020J05130)。
文摘Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present significant challenges.In this study,we report a CFM@UiO-66-NH_(2)membrane with high separation flux,efficiency and stability,through utilizing a robust anti-abrasion collagen fiber membrane(CFM)as the multifunctional support and UiO-66-NH_(2)by an in-situ growth as the separation layer.The high mechanical strength of the CFM compensated for the weakness of the separation layer,while the charge-breaking effect of UiO-66-NH_(2),along with the size sieving of its constituent separating layers and the capillary effect of the collagen fibers,contributed to the potential for efficient separation.Additionally,the CFM@UiO-66-NH_(2)membrane exhibited superhydrophilic properties,making it suitable for separating oil-in-water microemulsions and nanoemulsions stabilized by anionic surfactants.The membrane demonstrated remarkable separation efficiencies of up to 99.960%and a separation flux of370.05 L·m^(-2)·h^(-1).Moreover,it exhibits stability,durability,and abrasion resistance,maintaining excellent separation performance even when exposed to strong acids and alkalis without any damage to its structure and performance.After six cycles of reuse,it achieved a separation flux of 417.97 L·m^(-2)·h^(-1)and a separation efficiency of 99.747%.Furthermore,after undergoing 500 cycles of strong abrasion,the separation flux remained at 124.39 L·m^(-2)·h^(-1),with a separation efficiency of 99.992%.These properties make it suitable for the long-term use in harsh operating environments.We attribute these properties to the electrostatic effect resulting from the amino group on UiO-66-NH_(2)and its in-situ growth on the CFM,which forms a size-screening separation layer.Our work highlights the potential of the CFM@UiO-66-NH_(2)membrane as an environmentally friendly size-screening material for the efficient emulsion wastewater separation.
基金supported by the National Natural Science Foundation of China(82074523)the National Natural Youth Science Foundation of China(82004448).
文摘Objective To investigate the effects of acupotomy on skeletal muscle fibrosis and collagen deposition in a rabbit knee osteoarthritis(KOA)model.Methods Rabbits(n=18)were randomly divided into control,KOA,and KOA+acupotomy(Apo)groups(n=6).The rabbits in the KOA and Apo groups were modeled using the modified Videman's method for 6 weeks.After modeling,the Apo group was subjected to acupotomy once a week for 3 weeks on the vastus medialis,vastus lateralis,rectus femoris,biceps femoris,and anserine bursa tendons around the knee.The behavior of all animals was recorded,rectus femoris tissue was obtained,and histomorphological changes were observed using Masson staining and transmission electron microscopy.The expression of transforming growth factor-β1(TGF-β1),Smad 3,Smad 7,fibrillar collagen types I(Col-I)and III(Col-III)was detected using Western blot and real-time polymerase chain reaction(RT-PCR).Results Histological analysis revealed that acupotomy improved the microstructure and reduced the collagen volume fraction of rectus femoris,compared with the KOA group(P=.034).Acupotomy inhibited abnormal collagen deposition by modulating the expression of fibrosis-related proteins and mRNA,thus preventing skeletal muscle fibrosis.Western blot and RT-PCR analysis revealed that in the Apo group,Col-I,and Col-III protein levels were significantly lower than those in the KOA group(both P<.01),same as Col-I and Col-III mRNA levels(P=.0031;P=.0046).Compared with the KOA group,the protein levels of TGF-β1 and Smad 3 were significantly reduced(both P<.01),as were the mRNA levels of TGF-β1 and Smad 3(P=.0007;P=.0011).Conversely,the levels of protein and mRNA of Smad 7 were significantly higher than that in the KOA group(P<.01;P=.0271).Conclusion Acupotomy could alleviate skeletal muscle fibrosis and delay KOA progress by inhibiting collagen deposition through the TGF-β/Smad pathway in the skeletal muscle of KOA rabbits.
文摘Studying the skin care efficacy of recombinant humanized collagen based on in vitro level.The stability of the recombinant humanized collagen was first analyzed by treating at different temperatures,then its skincare efficacy based on in vitro level was evaluated by detecting the inhibition rate of elastase,the inhibition rate of collagenase,the protein content of type I collagen in human fibroblasts,the inhibition of reactive oxygen species(ROS)with human keratinocytes,and the effects of the recombinant humanized collagen on the expression of hyaluronic acid(HA),filaggrin(FLG)and transglutaminase 1(TGM1)in keratinocytes.The results showed that recombinant humanized collagen was able to maintain stability at temperatures below 70℃.With regard to its skincare efficacy,recombinant humanized collagen could inhibit elastase and collagenase activities and promote the increase of type I collagen content in human fibroblasts.It also showed good inhibition of ROS in keratinocytes in vitro and could increase the expression of HA,FLG,and TGM1 in keratinocytes.In short,the recombinant humanized collagen exhibited a favourable skin care effect in vitro level.This study proved that it has potential firming,anti-wrinkle,moisturizing,and repairing efficacy,and is a valuable cosmetic raw material.