Protein homeostasis is the basis of normal life activities,and the proteasomefamily plays an extremely important function in this process.The proteasome 2os is a concentric circle structure with twoαrings and twoβri...Protein homeostasis is the basis of normal life activities,and the proteasomefamily plays an extremely important function in this process.The proteasome 2os is a concentric circle structure with twoαrings and twoβrings overlapped.The proteasome 2os can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits(such as 19S,11S,and 200 PA),which is performed by its active subunitβ1,β2,andβ5.The proteasome can degrade misfolded,excess proteins tomaintain homeostasis.At the same time,it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth.Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-kB and p53,cell cycle,immune regulation,and drug resistance.Proteasome-encoding genes have been found to be overexpressed in a variety of tumors,providing a potential novel target for cancer therapy.In addition,proteasome inhibitors such as bortezomib,carfilzomib,and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma.More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma,non-small cell lung cancer,glioblastoma,and neuroblastoma.However,proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors.Therefore,further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.展开更多
The objective of this study was to evaluate the effects of chilling rate on porcine meat quality from the perspective of proteome using data independent acquisition(DIA)-based quantitative proteomic strategy. M. longi...The objective of this study was to evaluate the effects of chilling rate on porcine meat quality from the perspective of proteome using data independent acquisition(DIA)-based quantitative proteomic strategy. M. longissimus thoracis et lumborum(n = 9) was assigned randomly to the control group(3.72 ℃/h), very fast chilling-Ⅰ group(VFC-Ⅰ, 9.31℃/h) and VFC-Ⅱ group(14.43 ℃/h). The DIA was used to analyze the difference in proteins under different chilling rates. Results showed that tenderness was improved significantly in meat at the chilling rate of 14.43 ℃/h. Seventy-nine differential abundant proteins(fold change > 1.5, P < 0.05), including 46 up-regulated and 33 down-regulated proteins, were identified and mainly involved in carbon metabolism, pyruvate metabolism and proteasome pathways. These pathways indicated that VFC delayed cell metabolism and glycolysis by down-regulating the expression of metabolic enzymes. The tenderness was improved by up-regulating the expression of proteasome and m-calpain.展开更多
In this editorial we comment on the article by Tang et al published in the recent issue of World Journal of Hepatology.Drug therapy of intrahepatic cholangiocarcinoma(iCCA)poses an enormous challenge since only a smal...In this editorial we comment on the article by Tang et al published in the recent issue of World Journal of Hepatology.Drug therapy of intrahepatic cholangiocarcinoma(iCCA)poses an enormous challenge since only a small proportion of patients demonstrate beneficial responses to therapeutic agents.Thus,there has been a sustained search for novel molecular targets for iCCA.The study by Tang et al evaluated the role of 26S proteasome non-ATPase regulatory subunit 6(PSMD6),a 19S regulatory subunit of the proteasome,in human iCCA cells and specimens.The authors employed clustered regularly interspaced short palindromic repeat(CRISPR)knockout screening technology integrated with the computational CERES algorithm,and analyzed the human protein atlas(THPA)database and tissue microarrays.The results show that PSMD6 is a gene essential for the proliferation of 17 iCCA cell lines,and PSMD6 protein was overexpressed in iCCA tissues without a significant correlation with the clinicopathological parameters.The authors conclude that PSMD6 may play a promoting role in iCCA.The major limitations and defects of this study are the lack of detailed information of CRISPR knockout screening,in vivo experiments,and a discussion of plausible mechanistic cues,which,therefore,dampen the significance of the results.Further studies are required to verify PSMD6 as a molecular target for developing novel therapeutics for iCCA.In addition,the editorial article summarizes the latest advances in molecular targeted drugs and recently emerging immunotherapy in the clinical management of iCCA,development of proteasome inhibitors for cancer therapy,and advantages of CRISPR screening technology,computational methods,and THPA database as experimental tools for fighting cancer.We hope that these comments may provide some clues for those engaged in the field of basic and clinical research into iCCA.展开更多
BACKGROUND Currently,intrahepatic cholangiocarcinoma(ICC)poses a continuing,significant health challenge,but the relationship has yet to be established between ICC and the proteasome 26S subunit non-ATPase 6(PSMD6).AI...BACKGROUND Currently,intrahepatic cholangiocarcinoma(ICC)poses a continuing,significant health challenge,but the relationship has yet to be established between ICC and the proteasome 26S subunit non-ATPase 6(PSMD6).AIM To investigate the protein expression and clinicopathological significance of PSMD6 in ICC.METHODS The potential impact of the PSMD6 gene on the growth of ICC cell lines was analyzed using clustered regularly interspaced short palindromic repeat knockout screening technology.Forty-two paired specimens of ICC and adjacent noncancerous tissues were collected.PSMD6 protein expression was determined by immunohistochemistry.Receiver operating characteristic curve analysis was performed to validate PSMD6 expression level,and its association with ICC patients’various clinicopathological characteristics was investigated.RESULTS The PSMD6 gene was found to be essential for the growth of ICC cell lines.PSMD6 protein was significantly overexpressed in ICC tissues(P<0.001),but showed no significant association with patient age,gender,pathological grade,or tumor-node-metastasis stage(P>0.05).CONCLUSION PSMD6 can promote the growth of ICC cells,thus playing a pro-oncogenic role.展开更多
Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by...Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.展开更多
[Objective] Using molecular biotechnology to clone the proteasome β5 gene from cotton bollworm (Helicoverpa armigera), this research aimed to provide basis for further research on the function of proteasome β5 gene ...[Objective] Using molecular biotechnology to clone the proteasome β5 gene from cotton bollworm (Helicoverpa armigera), this research aimed to provide basis for further research on the function of proteasome β5 gene in cotton bollworm. [Method] Total RNA was extracted from midgut of cotton bollworm. The full length cDNA of Habeta5 gene was cloned by using rapid amplification of cDNA ends (RACE) technology, then sequence analysis was carried out. [Result] The full length cDNA sequence was successfully cloned and isolated, named as Habeta5. It was 947 bp in length, contained an ORF (843 bp) and encoded 280 amino acid residues, with the predicted mass of 30.87 kD and isoelectric point(pI) of 9.60. In the deduced amino acid sequence, a proteasome β5 subunit domain lies between 74th to 261st amino acid residues. It has more than 62% identity to other insects such as Drosophila melanogaster. The proteasome β5 subunit conservative regions were very similar with each other. Molecular evolution by Neighbor Joining method indicated that Habeta5 was homologous with other proteasome β5 subunit of species. [Conclusion] Sequence alignment shows that the cloned fragment is a proteasome β5 subunit gene (GenBank accession number: FJ358434).展开更多
S-RNase-mediated gametophytic self-incompatibility (GSI) is controlled by a multiallelic S-locus at which two separate genes, the female (pistil) and male (pollen) specificity determinants, are tightly linked. T...S-RNase-mediated gametophytic self-incompatibility (GSI) is controlled by a multiallelic S-locus at which two separate genes, the female (pistil) and male (pollen) specificity determinants, are tightly linked. This review described both the identification of pollen specific F-box genes, SLF/SFBs, in Antirrhinum, Petunia and Prunus species and the demonstration of SLF/SFB as pollen determinant together with their functions in GSI response. Recent studies of how the pollen determinant functions in pollination reaction revealed that pollen determinant interacted with S-RNases in a non-allele-specific manner. It targeted all of the non-self S-RNases for ubiquitination through a functional SCF complex and subsequent degradation via 26S proteasome pathway in compatible reaction. It allows pollen tube to reach into the embryo sac and to finish double fertilization. In incompatible response, the intact self S-RNases were left to function as a cytotoxin that degrades self-pollen tube RNA, resulting in the cessation of pollen tube growth.展开更多
The COP9 signalosome and the regulatory lid of the 26S proteasome are both eight-subunit protein complexes which are present in most eukaryotes. There is a one-to-one relationship between the corresponding subunits of...The COP9 signalosome and the regulatory lid of the 26S proteasome are both eight-subunit protein complexes which are present in most eukaryotes. There is a one-to-one relationship between the corresponding subunits of the two protein complexes in terms of their size and amino acid sequences. Eight groups of subunits from the COP9 signalosome and the proteasome lid complex of different organisms are collected from all the databases at the NCBI website. The corresponding subunits of COP9 signalosome and proteasome lid complex share at least 12% amino acid identity and some conserved regions, and the conserved sites spread evenly over the entire length of the subunits, suggesting that the two complexes have a common evolutionary ancestor. Phylogenetic analyses based on the amino acid sequences of the corresponding subunits of two protein complexes indicate that every tree consists of two clades. The subunits from one of the two protein complexes of different organisms are grouped into one of the two clades respectively. The sequences of single-cell organisms are always the basal groups to that of multi-cell animal and plant species. These results imply that the duplication/divergence events of COP9 signalosome and regulatory lid of the proteasome genes have occurred before the divergence of single-cell and multi-cell eukaryotes, and the genes of the two complexes are independently evolved. The analyses of dN/dS correlation show significant Pearson's correlations between 21 and 15 pairs of subunit-encoding sequences within the COP9 signalosome and the proteasome lid complex respectively, suggesting that those subunits pairs might have related functions and interacted with one another, and resulted in co-evolution.展开更多
Five theories shed lights on the potential mechanisms of aging:somatic mutations,telomere loss,mitochondrial defects,and accumulation of altered proteins inside proteasomes.The existence of a program of aging is not y...Five theories shed lights on the potential mechanisms of aging:somatic mutations,telomere loss,mitochondrial defects,and accumulation of altered proteins inside proteasomes.The existence of a program of aging is not yet identified,but overlaps with a program for risks of death.On the other hand,organisms are programmed for survival,which ultimately fails.This failure results in aging,notabily,focusing on alterations of specific genes.Irregular examinations,dysfunctions,insufficient use of fluoride,and removable partial dentures,are favoring the formation of caries and periodontal pathologies.Oral lesions are due to local trauma,related gingival recession,and formation of pockets.They are associated to insufficient removal of food/plaque.Epithelial thinning,and reduction of extracellular matrix components,lead to plications and foldings of the mucosal surface,and subsequently to bacterial colonization.Geriatric dentistry(or gerodontology)is an increasing field of dentistry,mostly associated with the growing percentage of patients over 80+years.展开更多
There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-...There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-lived cellular proteins. Recent studies reveal that proteasomal degradation system is also involved in signal transduction and regulation of various cellular functions. Dysfunction or dysregulation of proteasomal function may thus be an important pathogenic mechanism in certain neurological disorders. This paper reviews the biological functions of proteasome in signal transduction and its potential roles in neurodegenerative diseases.展开更多
Transforming growth factor β (TGFβ) controls cellular behavior in embryonic and adult tissues. TGFβ binding to serine/threonine kinase receptors on the plasma membrane activates Smad molecules and additional sign...Transforming growth factor β (TGFβ) controls cellular behavior in embryonic and adult tissues. TGFβ binding to serine/threonine kinase receptors on the plasma membrane activates Smad molecules and additional signaling proteins that together regulate gene expression. In this review, mechanisms and models that aim at explaining the coordination between several components of the signaling network downstream of TGFβ are presented. We discuss how the activity and duration of TGFβ receptor/Smad signaling can be regulated by post-translational modifications that affect the stability of key proteins in the pathway. We highlight finks between these mechanisms and human diseases, such as tissue fibrosis and cancer.展开更多
AIM: To investigate the antiproliferative effect of the histone deacetylase (HDAC) inhibitor MS-275 on cholangiocarcinoma cells alone and in combination with conventional cytostatic drugs (gemcitabine or doxorubicin) ...AIM: To investigate the antiproliferative effect of the histone deacetylase (HDAC) inhibitor MS-275 on cholangiocarcinoma cells alone and in combination with conventional cytostatic drugs (gemcitabine or doxorubicin) or the novel anticancer agents sorafenib or bortezomib. METHODS: Two human bile duct adenocarcinoma cell lines (EGI-1 and TFK-1) were studied. Crystal violet staining was used for detection of cell number changes. Cytotoxicity was determined by measuring the release of the cytoplasmic enzyme lactate dehydrogenase (LDH). Apoptosis was determined by measuring the enzyme activity of caspase-3. Cell cycle status reflected by the DNA content was detected by flow cytometry.RESULTS: MS-275 treatment potently inhibited the proliferation of EGI-1 and TFK-1 cholangiocarcinoma cells by inducing apoptosis and cell cycle arrest. MS-275-induced apoptosis was characterized by activation of caspase-3, up-regulation of Bax and down-regulation of Bcl-2. Cell cycle was predominantly arrested at the G1/S checkpoint, which was associated with induction of the cyclin-dependent kinase inhibitor p21Waf/CIP1. Furthermore, additive anti-neoplastic effects were observed when MS-275 treatment was combined with gemcitabine or doxorubicin, while combination with the multi-kinase inhibitor sorafenib or the proteasome inhibitor bortezomib resulted in overadditive anti-neoplastic effects.CONCLUSION: The growth of human cholangiocarcinoma cells can be potently inhibited by MS-275 alone or in combination with conventional cytostatic drugs or new, targeted anticancer agents.展开更多
Autophagic and proteasomal proteolysis are two major pathways for degradation of cellular constituents. Current models suggest that autophagy is responsible for the nonselective bulk degradation of long-lived proteins...Autophagic and proteasomal proteolysis are two major pathways for degradation of cellular constituents. Current models suggest that autophagy is responsible for the nonselective bulk degradation of long-lived proteins and organelles while the proteasome specifically degrades short-lived proteins including misfolded proteins caused by the absence of Hsp90 function. Here, we show that the IκB kinase (IKK), an essential activator of NF-κB, is selectively degraded by autophagy when Hsp90 is inhibited by geldanamycin (GA), a specific Hsp90 inhibitor showing highly effective anti-tumor activity. We find that in this case inactivation of ubiquitination or proteasome fails to block IKK degradation. However, inhibition of autophagy by an autophagy inhibitor or knockout of Atg5, a key component of the autophagy pathway, significantly rescues IKK from GA-induced degradation. These findings provide the first evidence that an Hsp90 client may be degraded by a mechanism different from the proteasome pathway and establish a molecular link among Hsp90, NF-κB and autophagy展开更多
A major issue in organ transplantation is the development of a protocol that can preserve organs under optimal conditions. Damage to organs is commonly a consequence of flow deprivation and oxygen starvation following...A major issue in organ transplantation is the development of a protocol that can preserve organs under optimal conditions. Damage to organs is commonly a consequence of flow deprivation and oxygen starvation following the restoration of blood flow and reoxygenation. This is known as ischemia-reperfusion injury(IRI): a complex multifactorial process that causes cell damage. While the oxygen deprivation due to ischemia depletes cell energy, subsequent tissue oxygenation due to reperfusion induces many cascades, from reactive oxygen species production to apoptosis initiation. Autophagy has also been identified in the pathogenesis of IRI, although such alterations and their subsequent functional significance are controversial. Moreover, proteasome activation may be a relevant pathophysiological mechanism. Different strategies have been adopted to limit IRI damage, including the supplementation of commercial preservation media with pharmacological agents or additives. In this review, we focus on novel strategies related to the ubiquitin proteasome system and oxidative stress inhibition, which have been used to minimize damage in liver transplantation.展开更多
Aim To synthesize protected aminoalkyl sulfinyl dilactones which were useful as the synthetic intermediates or the Cterminal pharmacophores of potential peptidomimetic proteasome inhibitors. Methods Organic reactions ...Aim To synthesize protected aminoalkyl sulfinyl dilactones which were useful as the synthetic intermediates or the Cterminal pharmacophores of potential peptidomimetic proteasome inhibitors. Methods Organic reactions such as reduction, oxidation, olcfmation, and dihydroxylation were used. Results A convenient synthetic procedure to afford a series of aminoalkyl sulfinyl.dilactones was presented, which would be useful in the synthesis of five- or six-member sulfmyl dilactones. Conclusion Four aminoalkyl sulfmyl dilactones connecting different α-amino acids were synthesized.展开更多
Intracellular protein degradation by the ubiquitin-proteasome system is ATP dependent, and the optimal ATP concentration to activate proteasome function in vitro is -100 μM. IntraceUular ATP levels are generally in t...Intracellular protein degradation by the ubiquitin-proteasome system is ATP dependent, and the optimal ATP concentration to activate proteasome function in vitro is -100 μM. IntraceUular ATP levels are generally in the low millimolar range, but ATP at a level within this range was shown to inhibit proteasome peptidase activities in vitro. Here, we report new evidence that supports a hypothesis that intracellular ATP at the physiological levels bidirectionally regulates 26S proteasome proteolytic function in the cell. First, we confirmed that ATP exerted bidirectional regulation on the 26S proteasome in vitro, with the optimal ATP concentration (between 50 and 100μM) stimulating proteasome chymotrypsin-like activities. Second, we found that manipulating intracellular ATP levels also led to bidirectional changes in the levels of proteasome-specific protein substrates in cultured cells. Finally, measures to increase intracellular ATP enhanced, while decreasing intraceHular ATP attenuated the ability of proteasome inhibition to induce cell death. These data strongly suggest that endogenous ATP within the physiological concentration range can exert a negative impact on proteasome activities, allowing the cell to rapidly upregulate proteasome activity on ATP reduction under stress conditions.展开更多
Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally ...Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally located in the cytoplasm and in the mitochondria, which does not only injure liver cells, but also other vital organs, such as the heart and the brain. Therefore, there is a need for better treatment to enhance the antioxidant response elements. To date, there is no established treatment to attenuate high levels of oxidative stress in the liver of alcoholic patients. To block this oxidative stress, proteasome inhibitor treatment has been found to significantly enhance the antioxidant response elements of hepatocytes exposed to ethanol. Recent studies have shown in an experimental model of alcoholic liver disease that proteasome inhibitor treatment at low dose has cytoprotective effects against ethanol-induced oxidative stress and liver steatosis. The beneficial effects of proteasome inhibitor treatment against oxidative stress occurred because antioxidant response elements (glutathione peroxidase 2, superoxide dismutase 2, glutathione synthetase, glutathione reductase, and GCLC) were upregulated when rats fed alcohol were treated with a low dose of PS-34Z (Bortezomib, Velcade). This is an important finding because proteasome inhibitor treatment up-regulated reactive oxygen species removal and glutathione recycling enzymes, while ethanol feeding alone down-regulated these antioxidant elements. For the first time, it was shown that proteasome inhibition by a highly specific and reversible inhibitor is different from the chronic ethanol feeding-induced proteasome inhibition. As previously shown by our group, chronic ethanol feeding causes a complex dysfunction in the ubiquitin proteasome pathway, which affects the proteasome system, as well as the ubiquitination system. The beneficial effects of proteasome inhibitor treatment in alcoholic liver disease are related to proteasome inhibitor reversibility and the rebound of proteasome activity 72 h post PS-341 administration.展开更多
基金supported by the National Natural Science Foundation of China(No.82172619)the Natural Science Foundation of Chongqing,China(No.CSTC2021jscx-gksb-No023)the Medical and Industrial Integration Project(China)(No.2022CDJYGRH-002).
文摘Protein homeostasis is the basis of normal life activities,and the proteasomefamily plays an extremely important function in this process.The proteasome 2os is a concentric circle structure with twoαrings and twoβrings overlapped.The proteasome 2os can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits(such as 19S,11S,and 200 PA),which is performed by its active subunitβ1,β2,andβ5.The proteasome can degrade misfolded,excess proteins tomaintain homeostasis.At the same time,it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth.Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-kB and p53,cell cycle,immune regulation,and drug resistance.Proteasome-encoding genes have been found to be overexpressed in a variety of tumors,providing a potential novel target for cancer therapy.In addition,proteasome inhibitors such as bortezomib,carfilzomib,and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma.More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma,non-small cell lung cancer,glioblastoma,and neuroblastoma.However,proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors.Therefore,further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.
基金support from the National Natural Science Foundation of China(32030086).
文摘The objective of this study was to evaluate the effects of chilling rate on porcine meat quality from the perspective of proteome using data independent acquisition(DIA)-based quantitative proteomic strategy. M. longissimus thoracis et lumborum(n = 9) was assigned randomly to the control group(3.72 ℃/h), very fast chilling-Ⅰ group(VFC-Ⅰ, 9.31℃/h) and VFC-Ⅱ group(14.43 ℃/h). The DIA was used to analyze the difference in proteins under different chilling rates. Results showed that tenderness was improved significantly in meat at the chilling rate of 14.43 ℃/h. Seventy-nine differential abundant proteins(fold change > 1.5, P < 0.05), including 46 up-regulated and 33 down-regulated proteins, were identified and mainly involved in carbon metabolism, pyruvate metabolism and proteasome pathways. These pathways indicated that VFC delayed cell metabolism and glycolysis by down-regulating the expression of metabolic enzymes. The tenderness was improved by up-regulating the expression of proteasome and m-calpain.
基金Supported by The National Key Research and Development Program of China,No.2017YFC1308602The Research Funds by the Fifth Affiliated Hospital of Harbin Medical University,No.2022-002 and No.2023-001.
文摘In this editorial we comment on the article by Tang et al published in the recent issue of World Journal of Hepatology.Drug therapy of intrahepatic cholangiocarcinoma(iCCA)poses an enormous challenge since only a small proportion of patients demonstrate beneficial responses to therapeutic agents.Thus,there has been a sustained search for novel molecular targets for iCCA.The study by Tang et al evaluated the role of 26S proteasome non-ATPase regulatory subunit 6(PSMD6),a 19S regulatory subunit of the proteasome,in human iCCA cells and specimens.The authors employed clustered regularly interspaced short palindromic repeat(CRISPR)knockout screening technology integrated with the computational CERES algorithm,and analyzed the human protein atlas(THPA)database and tissue microarrays.The results show that PSMD6 is a gene essential for the proliferation of 17 iCCA cell lines,and PSMD6 protein was overexpressed in iCCA tissues without a significant correlation with the clinicopathological parameters.The authors conclude that PSMD6 may play a promoting role in iCCA.The major limitations and defects of this study are the lack of detailed information of CRISPR knockout screening,in vivo experiments,and a discussion of plausible mechanistic cues,which,therefore,dampen the significance of the results.Further studies are required to verify PSMD6 as a molecular target for developing novel therapeutics for iCCA.In addition,the editorial article summarizes the latest advances in molecular targeted drugs and recently emerging immunotherapy in the clinical management of iCCA,development of proteasome inhibitors for cancer therapy,and advantages of CRISPR screening technology,computational methods,and THPA database as experimental tools for fighting cancer.We hope that these comments may provide some clues for those engaged in the field of basic and clinical research into iCCA.
文摘BACKGROUND Currently,intrahepatic cholangiocarcinoma(ICC)poses a continuing,significant health challenge,but the relationship has yet to be established between ICC and the proteasome 26S subunit non-ATPase 6(PSMD6).AIM To investigate the protein expression and clinicopathological significance of PSMD6 in ICC.METHODS The potential impact of the PSMD6 gene on the growth of ICC cell lines was analyzed using clustered regularly interspaced short palindromic repeat knockout screening technology.Forty-two paired specimens of ICC and adjacent noncancerous tissues were collected.PSMD6 protein expression was determined by immunohistochemistry.Receiver operating characteristic curve analysis was performed to validate PSMD6 expression level,and its association with ICC patients’various clinicopathological characteristics was investigated.RESULTS The PSMD6 gene was found to be essential for the growth of ICC cell lines.PSMD6 protein was significantly overexpressed in ICC tissues(P<0.001),but showed no significant association with patient age,gender,pathological grade,or tumor-node-metastasis stage(P>0.05).CONCLUSION PSMD6 can promote the growth of ICC cells,thus playing a pro-oncogenic role.
基金This work was supported by the Natural Science Foundation of Shanghai Municipality(No.03ZR14016).
文摘Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.
基金Supported by National Basic Research Program of China(2005CB121005)~~
文摘[Objective] Using molecular biotechnology to clone the proteasome β5 gene from cotton bollworm (Helicoverpa armigera), this research aimed to provide basis for further research on the function of proteasome β5 gene in cotton bollworm. [Method] Total RNA was extracted from midgut of cotton bollworm. The full length cDNA of Habeta5 gene was cloned by using rapid amplification of cDNA ends (RACE) technology, then sequence analysis was carried out. [Result] The full length cDNA sequence was successfully cloned and isolated, named as Habeta5. It was 947 bp in length, contained an ORF (843 bp) and encoded 280 amino acid residues, with the predicted mass of 30.87 kD and isoelectric point(pI) of 9.60. In the deduced amino acid sequence, a proteasome β5 subunit domain lies between 74th to 261st amino acid residues. It has more than 62% identity to other insects such as Drosophila melanogaster. The proteasome β5 subunit conservative regions were very similar with each other. Molecular evolution by Neighbor Joining method indicated that Habeta5 was homologous with other proteasome β5 subunit of species. [Conclusion] Sequence alignment shows that the cloned fragment is a proteasome β5 subunit gene (GenBank accession number: FJ358434).
基金This work was supported by grants from Three Founda-tions of Hunan Province (00JZY2155) and International Cooperation Project
文摘S-RNase-mediated gametophytic self-incompatibility (GSI) is controlled by a multiallelic S-locus at which two separate genes, the female (pistil) and male (pollen) specificity determinants, are tightly linked. This review described both the identification of pollen specific F-box genes, SLF/SFBs, in Antirrhinum, Petunia and Prunus species and the demonstration of SLF/SFB as pollen determinant together with their functions in GSI response. Recent studies of how the pollen determinant functions in pollination reaction revealed that pollen determinant interacted with S-RNases in a non-allele-specific manner. It targeted all of the non-self S-RNases for ubiquitination through a functional SCF complex and subsequent degradation via 26S proteasome pathway in compatible reaction. It allows pollen tube to reach into the embryo sac and to finish double fertilization. In incompatible response, the intact self S-RNases were left to function as a cytotoxin that degrades self-pollen tube RNA, resulting in the cessation of pollen tube growth.
文摘The COP9 signalosome and the regulatory lid of the 26S proteasome are both eight-subunit protein complexes which are present in most eukaryotes. There is a one-to-one relationship between the corresponding subunits of the two protein complexes in terms of their size and amino acid sequences. Eight groups of subunits from the COP9 signalosome and the proteasome lid complex of different organisms are collected from all the databases at the NCBI website. The corresponding subunits of COP9 signalosome and proteasome lid complex share at least 12% amino acid identity and some conserved regions, and the conserved sites spread evenly over the entire length of the subunits, suggesting that the two complexes have a common evolutionary ancestor. Phylogenetic analyses based on the amino acid sequences of the corresponding subunits of two protein complexes indicate that every tree consists of two clades. The subunits from one of the two protein complexes of different organisms are grouped into one of the two clades respectively. The sequences of single-cell organisms are always the basal groups to that of multi-cell animal and plant species. These results imply that the duplication/divergence events of COP9 signalosome and regulatory lid of the proteasome genes have occurred before the divergence of single-cell and multi-cell eukaryotes, and the genes of the two complexes are independently evolved. The analyses of dN/dS correlation show significant Pearson's correlations between 21 and 15 pairs of subunit-encoding sequences within the COP9 signalosome and the proteasome lid complex respectively, suggesting that those subunits pairs might have related functions and interacted with one another, and resulted in co-evolution.
文摘Five theories shed lights on the potential mechanisms of aging:somatic mutations,telomere loss,mitochondrial defects,and accumulation of altered proteins inside proteasomes.The existence of a program of aging is not yet identified,but overlaps with a program for risks of death.On the other hand,organisms are programmed for survival,which ultimately fails.This failure results in aging,notabily,focusing on alterations of specific genes.Irregular examinations,dysfunctions,insufficient use of fluoride,and removable partial dentures,are favoring the formation of caries and periodontal pathologies.Oral lesions are due to local trauma,related gingival recession,and formation of pockets.They are associated to insufficient removal of food/plaque.Epithelial thinning,and reduction of extracellular matrix components,lead to plications and foldings of the mucosal surface,and subsequently to bacterial colonization.Geriatric dentistry(or gerodontology)is an increasing field of dentistry,mostly associated with the growing percentage of patients over 80+years.
基金This work was supported by the National Natural Science Foundation of China (No. 30470587, No. 30600197).
文摘There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-lived cellular proteins. Recent studies reveal that proteasomal degradation system is also involved in signal transduction and regulation of various cellular functions. Dysfunction or dysregulation of proteasomal function may thus be an important pathogenic mechanism in certain neurological disorders. This paper reviews the biological functions of proteasome in signal transduction and its potential roles in neurodegenerative diseases.
文摘Transforming growth factor β (TGFβ) controls cellular behavior in embryonic and adult tissues. TGFβ binding to serine/threonine kinase receptors on the plasma membrane activates Smad molecules and additional signaling proteins that together regulate gene expression. In this review, mechanisms and models that aim at explaining the coordination between several components of the signaling network downstream of TGFβ are presented. We discuss how the activity and duration of TGFβ receptor/Smad signaling can be regulated by post-translational modifications that affect the stability of key proteins in the pathway. We highlight finks between these mechanisms and human diseases, such as tissue fibrosis and cancer.
基金a scholarship from the Sonnenfeld-Stiftung,Berlin,Germany for Viola Baradari
文摘AIM: To investigate the antiproliferative effect of the histone deacetylase (HDAC) inhibitor MS-275 on cholangiocarcinoma cells alone and in combination with conventional cytostatic drugs (gemcitabine or doxorubicin) or the novel anticancer agents sorafenib or bortezomib. METHODS: Two human bile duct adenocarcinoma cell lines (EGI-1 and TFK-1) were studied. Crystal violet staining was used for detection of cell number changes. Cytotoxicity was determined by measuring the release of the cytoplasmic enzyme lactate dehydrogenase (LDH). Apoptosis was determined by measuring the enzyme activity of caspase-3. Cell cycle status reflected by the DNA content was detected by flow cytometry.RESULTS: MS-275 treatment potently inhibited the proliferation of EGI-1 and TFK-1 cholangiocarcinoma cells by inducing apoptosis and cell cycle arrest. MS-275-induced apoptosis was characterized by activation of caspase-3, up-regulation of Bax and down-regulation of Bcl-2. Cell cycle was predominantly arrested at the G1/S checkpoint, which was associated with induction of the cyclin-dependent kinase inhibitor p21Waf/CIP1. Furthermore, additive anti-neoplastic effects were observed when MS-275 treatment was combined with gemcitabine or doxorubicin, while combination with the multi-kinase inhibitor sorafenib or the proteasome inhibitor bortezomib resulted in overadditive anti-neoplastic effects.CONCLUSION: The growth of human cholangiocarcinoma cells can be potently inhibited by MS-275 alone or in combination with conventional cytostatic drugs or new, targeted anticancer agents.
文摘Autophagic and proteasomal proteolysis are two major pathways for degradation of cellular constituents. Current models suggest that autophagy is responsible for the nonselective bulk degradation of long-lived proteins and organelles while the proteasome specifically degrades short-lived proteins including misfolded proteins caused by the absence of Hsp90 function. Here, we show that the IκB kinase (IKK), an essential activator of NF-κB, is selectively degraded by autophagy when Hsp90 is inhibited by geldanamycin (GA), a specific Hsp90 inhibitor showing highly effective anti-tumor activity. We find that in this case inactivation of ubiquitination or proteasome fails to block IKK degradation. However, inhibition of autophagy by an autophagy inhibitor or knockout of Atg5, a key component of the autophagy pathway, significantly rescues IKK from GA-induced degradation. These findings provide the first evidence that an Hsp90 client may be degraded by a mechanism different from the proteasome pathway and establish a molecular link among Hsp90, NF-κB and autophagy
基金Supported by Fondo de Investigaciones Sanitarias,Ministerio de Economia y Competitividad(Madrid,Spain),No.PI15/00110
文摘A major issue in organ transplantation is the development of a protocol that can preserve organs under optimal conditions. Damage to organs is commonly a consequence of flow deprivation and oxygen starvation following the restoration of blood flow and reoxygenation. This is known as ischemia-reperfusion injury(IRI): a complex multifactorial process that causes cell damage. While the oxygen deprivation due to ischemia depletes cell energy, subsequent tissue oxygenation due to reperfusion induces many cascades, from reactive oxygen species production to apoptosis initiation. Autophagy has also been identified in the pathogenesis of IRI, although such alterations and their subsequent functional significance are controversial. Moreover, proteasome activation may be a relevant pathophysiological mechanism. Different strategies have been adopted to limit IRI damage, including the supplementation of commercial preservation media with pharmacological agents or additives. In this review, we focus on novel strategies related to the ubiquitin proteasome system and oxidative stress inhibition, which have been used to minimize damage in liver transplantation.
基金National Natural Science Foundation of China(20572006)985 Program,Ministry of Education of China
文摘Aim To synthesize protected aminoalkyl sulfinyl dilactones which were useful as the synthetic intermediates or the Cterminal pharmacophores of potential peptidomimetic proteasome inhibitors. Methods Organic reactions such as reduction, oxidation, olcfmation, and dihydroxylation were used. Results A convenient synthetic procedure to afford a series of aminoalkyl sulfinyl.dilactones was presented, which would be useful in the synthesis of five- or six-member sulfmyl dilactones. Conclusion Four aminoalkyl sulfmyl dilactones connecting different α-amino acids were synthesized.
基金Acknowledgments This work was supported by the National High Technol- ogy Research and Development Program of China (Project 2006AA02Z4B5), the National Natural Science Foundation of China (Project 2010), and a Key Project (9251018201002) of Guangdong Province Natural Science Foundation (to JL). It was also supported in part by Grants HL072166, HL085629, and HL068936 of the NIH and an Established Investigator Award (0740025N) of the American Heart Association (to XW).
文摘Intracellular protein degradation by the ubiquitin-proteasome system is ATP dependent, and the optimal ATP concentration to activate proteasome function in vitro is -100 μM. IntraceUular ATP levels are generally in the low millimolar range, but ATP at a level within this range was shown to inhibit proteasome peptidase activities in vitro. Here, we report new evidence that supports a hypothesis that intracellular ATP at the physiological levels bidirectionally regulates 26S proteasome proteolytic function in the cell. First, we confirmed that ATP exerted bidirectional regulation on the 26S proteasome in vitro, with the optimal ATP concentration (between 50 and 100μM) stimulating proteasome chymotrypsin-like activities. Second, we found that manipulating intracellular ATP levels also led to bidirectional changes in the levels of proteasome-specific protein substrates in cultured cells. Finally, measures to increase intracellular ATP enhanced, while decreasing intraceHular ATP attenuated the ability of proteasome inhibition to induce cell death. These data strongly suggest that endogenous ATP within the physiological concentration range can exert a negative impact on proteasome activities, allowing the cell to rapidly upregulate proteasome activity on ATP reduction under stress conditions.
基金Supported by NIH/NIAAA 8116 and by a Pilot Project Funding from the Alcohol Center Grant on Liver and Pancreas P50-011999
文摘Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally located in the cytoplasm and in the mitochondria, which does not only injure liver cells, but also other vital organs, such as the heart and the brain. Therefore, there is a need for better treatment to enhance the antioxidant response elements. To date, there is no established treatment to attenuate high levels of oxidative stress in the liver of alcoholic patients. To block this oxidative stress, proteasome inhibitor treatment has been found to significantly enhance the antioxidant response elements of hepatocytes exposed to ethanol. Recent studies have shown in an experimental model of alcoholic liver disease that proteasome inhibitor treatment at low dose has cytoprotective effects against ethanol-induced oxidative stress and liver steatosis. The beneficial effects of proteasome inhibitor treatment against oxidative stress occurred because antioxidant response elements (glutathione peroxidase 2, superoxide dismutase 2, glutathione synthetase, glutathione reductase, and GCLC) were upregulated when rats fed alcohol were treated with a low dose of PS-34Z (Bortezomib, Velcade). This is an important finding because proteasome inhibitor treatment up-regulated reactive oxygen species removal and glutathione recycling enzymes, while ethanol feeding alone down-regulated these antioxidant elements. For the first time, it was shown that proteasome inhibition by a highly specific and reversible inhibitor is different from the chronic ethanol feeding-induced proteasome inhibition. As previously shown by our group, chronic ethanol feeding causes a complex dysfunction in the ubiquitin proteasome pathway, which affects the proteasome system, as well as the ubiquitination system. The beneficial effects of proteasome inhibitor treatment in alcoholic liver disease are related to proteasome inhibitor reversibility and the rebound of proteasome activity 72 h post PS-341 administration.