The detection of protein/small molecule interactions plays important roles in drug discovery and protein/metabolite interactions in biology. In this work, by coupling the terminal protection of small molecule-linked s...The detection of protein/small molecule interactions plays important roles in drug discovery and protein/metabolite interactions in biology. In this work, by coupling the terminal protection of small molecule-linked ss DNA strategy with the unmodified and positively charged gold nanoparticle((+)Au NP) nanoprobes, we have developed a sensitive and simple colorimetric sensor for the detection of folate receptor, a highly expressed protein in many kinds of malignant tumors. The target folate receptor binds the folate moieties of the folate-linked ss DNA through high affinity interactions and protects the protein-bound ss DNA from digestion by exonuclease I. The protected ss DNA thus adsorbs the((+)Au NP) through electrostatic interactions, leading to a red-to-blue color change of the sensing solution for sensitive colorimetric detection of folate receptor at the sub-nanomolar level. Besides, this colorimetric sensor shows high selectivity toward folate receptor against other control proteins. The developed sensor avoids the modification/conjugation of the Au NP nanoprobes and the involvement of any expensive instruments for signal transduction in protein detection. Featured with these obvious advantages, the colorimetric sensor strategy demonstrated herein can be easily expanded for sensitive and convenient detection of various protein/small molecule interactions.展开更多
基金supported by the National Natural Science Foundation of China (21505010, 21173274)Chongqing Research Program of Basic Research and Frontier Technology (cstc2015jcyj A1357)Scientific Research Innovation Team of Chongqing University of Technology (2015TD22)
文摘The detection of protein/small molecule interactions plays important roles in drug discovery and protein/metabolite interactions in biology. In this work, by coupling the terminal protection of small molecule-linked ss DNA strategy with the unmodified and positively charged gold nanoparticle((+)Au NP) nanoprobes, we have developed a sensitive and simple colorimetric sensor for the detection of folate receptor, a highly expressed protein in many kinds of malignant tumors. The target folate receptor binds the folate moieties of the folate-linked ss DNA through high affinity interactions and protects the protein-bound ss DNA from digestion by exonuclease I. The protected ss DNA thus adsorbs the((+)Au NP) through electrostatic interactions, leading to a red-to-blue color change of the sensing solution for sensitive colorimetric detection of folate receptor at the sub-nanomolar level. Besides, this colorimetric sensor shows high selectivity toward folate receptor against other control proteins. The developed sensor avoids the modification/conjugation of the Au NP nanoprobes and the involvement of any expensive instruments for signal transduction in protein detection. Featured with these obvious advantages, the colorimetric sensor strategy demonstrated herein can be easily expanded for sensitive and convenient detection of various protein/small molecule interactions.