Heat strain experienced by individuals wearing chemical protective clothing(CPC)is severe and dangerous especially in hot-humid environment.The development of material science and interdisciplinary studies including e...Heat strain experienced by individuals wearing chemical protective clothing(CPC)is severe and dangerous especially in hot-humid environment.The development of material science and interdisciplinary studies including ergonomics,physiology and heat transfer is urgently required for the reduction of heat strain.The aim of this paper was to study the relationship among clothing thermal properties,physiological responses and environmental conditions.Three kinds of CPC were selected.Eight participants wore CPC and walked(4 km/h,two slopes with 5%and 10%)on a treadmill in an environment with(35±0.5)℃ and RH of(60±5)%.Core temperature,mean skin temperature,heart rate,heat storage and tolerance time were recorded and analyzed.Physiological responses were significantly affected by the clothing thermal properties and activity intensity in hot-humid environment.The obtained results can help further development of heat strain model.New materials with lower evaporative resistance and less weight are necessary to release the heat strain in hot-humid environments.展开更多
In this paper,the protective performance of woven fab-rics against heat radiation is studied from the view offabric structure.As indices reflecting the protective per-formance against heat radiation,the heat emissivit...In this paper,the protective performance of woven fab-rics against heat radiation is studied from the view offabric structure.As indices reflecting the protective per-formance against heat radiation,the heat emissivity andthe transmissivity of different fabrics are measured.It ispointed out that structure changes of common textiles af-fect their transmission to heat radiation while have littleinfluence on their absorption or reflection to heat radi-ation except fabrics surfaces are aluminized.Double-layer weave is proved to be an effective fabric weave forreducing the trasmissivity.It helps increase the densityand tightness while keeps the comfort of woven fabrics atthe same time.展开更多
Background:Deep body temperature is a critical indicator of heat strain.However,direct measures are often invasive,costly,and difficult to implement in the field.This study assessed the agreement between deep body tem...Background:Deep body temperature is a critical indicator of heat strain.However,direct measures are often invasive,costly,and difficult to implement in the field.This study assessed the agreement between deep body temperature estimated from heart rate and that measured directly during repeated work bouts while wearing explosive ordnance disposal(EOD)protective clothing and during recovery.Methods:Eight males completed three work and recovery periods across two separate days.Work consisted of treadmill walking on a 1%incline at 2.5,4.0,or 5.5 km/h,in a random order,wearing EOD protective clothing.Ambient temperature and relative humidity were maintained at 24℃and 50%[Wet bulb globe temperature(WBGT)(20.9±1.2)℃]or 32℃and 60%[WBGT(29.0±0.2)℃]on the separate days,respectively.Heart rate and gastrointestinal temperature(TGI)were monitored continuously,and deep body temperature was also estimated from heart rate(ECTemp).Results:The overall systematic bias between TGI and ECTemp was 0.01℃with 95%limits of agreement(Lo A)of±0.64℃and a root mean square error of 0.32℃.The average error statistics among participants showed no significant differences in error between the exercise and recovery periods or the environmental conditions.At TGI levels of(37.0–37.5)℃,(37.5–38.0)℃,(38.0–38.5)℃,and>38.5℃,the systematic bias and±95%Lo A were(0.08±0.58)℃,(–0.02±0.69)℃,(–0.07±0.63)℃,and(–0.32±0.56)℃,respectively.Conclusions:The findings demonstrate acceptable validity of the ECTemp up to 38.5℃.Conducting work within an ECTemp limit of 38.4℃,in conditions similar to the present study,would protect the majority of personnel from an excessive elevation in deep body temperature(>39.0℃).展开更多
Firefighters rely on their protective gear for thermal insulation during fires. This study evaluated the flame resistance of firefighter PPE, including helmets, turnout gear, and gloves, under extreme conditions. Resu...Firefighters rely on their protective gear for thermal insulation during fires. This study evaluated the flame resistance of firefighter PPE, including helmets, turnout gear, and gloves, under extreme conditions. Results showed excellent performance of the F1 helmet but identified areas for improvement in gloves and turnout gear. The study provides insights into the heat transfer properties of different PPE components and offers recommendations for enhancing firefighter safety.展开更多
为探析调温服装领域的研究现状和发展趋势,本文基于文献计量法与文献综述法,以中国知网CNKI数据库和Web of Science核心合集数据库中相关文献为数据来源,通过VOSviewer和CiteSpace两款可视化软件,对调温服装研究的年发文量、发文作者、...为探析调温服装领域的研究现状和发展趋势,本文基于文献计量法与文献综述法,以中国知网CNKI数据库和Web of Science核心合集数据库中相关文献为数据来源,通过VOSviewer和CiteSpace两款可视化软件,对调温服装研究的年发文量、发文作者、发文机构、发文国家(地区)、关键词共现和聚类、关键词时间线等信息,进行科学知识图谱分析与描述性统计分析,以多维角度探索调温服装的研究热点与前沿。研究结果表明:2000年至今,国内外调温服装研究多应用于消防救援、医用防护、煤矿与隧道施工等处于极端工作环境的行业领域,且更加侧重于从人体生理反应数据对调温服装的性能进行优化,从服装逐步聚焦到着装者自身;调温方式、调温服装的性能评价、调温服装与人体生理指标的相互作用则是当前调温服装领域的研究热点;未来发展应以提升对轻量化、高效能的外源设备和新型调温材料的研发,建立健全相关的行业标准与生产技术规范,开展多维度的性能评价体系,立足于数智协同、研发多功能集成化的智能调温服装为主要方向。展开更多
Positive Pressure Protective Clothing(PPPC)is the most important personal protective equipment for BSL-4 laboratory and a primary barrier to avoid exposure to pathogenic microorganisms.However,during the process of st...Positive Pressure Protective Clothing(PPPC)is the most important personal protective equipment for BSL-4 laboratory and a primary barrier to avoid exposure to pathogenic microorganisms.However,during the process of storage,utilization,disinfection and inspection,it will be inevitable damaged in varying degrees.PPPC is expensive;therefore,effective repairs become an important procedure to prolong service life of PPPC and to ensure their protective function.This paper analyzed those common damages in PPPC during routine BSL-4 laboratory operations and provided repair plans which can be used as references for users and maintenance personnel.展开更多
文摘Heat strain experienced by individuals wearing chemical protective clothing(CPC)is severe and dangerous especially in hot-humid environment.The development of material science and interdisciplinary studies including ergonomics,physiology and heat transfer is urgently required for the reduction of heat strain.The aim of this paper was to study the relationship among clothing thermal properties,physiological responses and environmental conditions.Three kinds of CPC were selected.Eight participants wore CPC and walked(4 km/h,two slopes with 5%and 10%)on a treadmill in an environment with(35±0.5)℃ and RH of(60±5)%.Core temperature,mean skin temperature,heart rate,heat storage and tolerance time were recorded and analyzed.Physiological responses were significantly affected by the clothing thermal properties and activity intensity in hot-humid environment.The obtained results can help further development of heat strain model.New materials with lower evaporative resistance and less weight are necessary to release the heat strain in hot-humid environments.
文摘In this paper,the protective performance of woven fab-rics against heat radiation is studied from the view offabric structure.As indices reflecting the protective per-formance against heat radiation,the heat emissivity andthe transmissivity of different fabrics are measured.It ispointed out that structure changes of common textiles af-fect their transmission to heat radiation while have littleinfluence on their absorption or reflection to heat radi-ation except fabrics surfaces are aluminized.Double-layer weave is proved to be an effective fabric weave forreducing the trasmissivity.It helps increase the densityand tightness while keeps the comfort of woven fabrics atthe same time.
基金the Australian Government,managed by the National Security Science&Technology Centre within the Defence Science&Technology Organisation,and the US Government through the Technical Support Working Group within the Combating Terrorism Technical Support Office。
文摘Background:Deep body temperature is a critical indicator of heat strain.However,direct measures are often invasive,costly,and difficult to implement in the field.This study assessed the agreement between deep body temperature estimated from heart rate and that measured directly during repeated work bouts while wearing explosive ordnance disposal(EOD)protective clothing and during recovery.Methods:Eight males completed three work and recovery periods across two separate days.Work consisted of treadmill walking on a 1%incline at 2.5,4.0,or 5.5 km/h,in a random order,wearing EOD protective clothing.Ambient temperature and relative humidity were maintained at 24℃and 50%[Wet bulb globe temperature(WBGT)(20.9±1.2)℃]or 32℃and 60%[WBGT(29.0±0.2)℃]on the separate days,respectively.Heart rate and gastrointestinal temperature(TGI)were monitored continuously,and deep body temperature was also estimated from heart rate(ECTemp).Results:The overall systematic bias between TGI and ECTemp was 0.01℃with 95%limits of agreement(Lo A)of±0.64℃and a root mean square error of 0.32℃.The average error statistics among participants showed no significant differences in error between the exercise and recovery periods or the environmental conditions.At TGI levels of(37.0–37.5)℃,(37.5–38.0)℃,(38.0–38.5)℃,and>38.5℃,the systematic bias and±95%Lo A were(0.08±0.58)℃,(–0.02±0.69)℃,(–0.07±0.63)℃,and(–0.32±0.56)℃,respectively.Conclusions:The findings demonstrate acceptable validity of the ECTemp up to 38.5℃.Conducting work within an ECTemp limit of 38.4℃,in conditions similar to the present study,would protect the majority of personnel from an excessive elevation in deep body temperature(>39.0℃).
文摘Firefighters rely on their protective gear for thermal insulation during fires. This study evaluated the flame resistance of firefighter PPE, including helmets, turnout gear, and gloves, under extreme conditions. Results showed excellent performance of the F1 helmet but identified areas for improvement in gloves and turnout gear. The study provides insights into the heat transfer properties of different PPE components and offers recommendations for enhancing firefighter safety.
文摘为探析调温服装领域的研究现状和发展趋势,本文基于文献计量法与文献综述法,以中国知网CNKI数据库和Web of Science核心合集数据库中相关文献为数据来源,通过VOSviewer和CiteSpace两款可视化软件,对调温服装研究的年发文量、发文作者、发文机构、发文国家(地区)、关键词共现和聚类、关键词时间线等信息,进行科学知识图谱分析与描述性统计分析,以多维角度探索调温服装的研究热点与前沿。研究结果表明:2000年至今,国内外调温服装研究多应用于消防救援、医用防护、煤矿与隧道施工等处于极端工作环境的行业领域,且更加侧重于从人体生理反应数据对调温服装的性能进行优化,从服装逐步聚焦到着装者自身;调温方式、调温服装的性能评价、调温服装与人体生理指标的相互作用则是当前调温服装领域的研究热点;未来发展应以提升对轻量化、高效能的外源设备和新型调温材料的研发,建立健全相关的行业标准与生产技术规范,开展多维度的性能评价体系,立足于数智协同、研发多功能集成化的智能调温服装为主要方向。
基金This work was supported by Major Infectious Diseases such as AIDS and Viral Hepatitis Prevention and Control of Major Projects(2017ZX10304403-004)。
文摘Positive Pressure Protective Clothing(PPPC)is the most important personal protective equipment for BSL-4 laboratory and a primary barrier to avoid exposure to pathogenic microorganisms.However,during the process of storage,utilization,disinfection and inspection,it will be inevitable damaged in varying degrees.PPPC is expensive;therefore,effective repairs become an important procedure to prolong service life of PPPC and to ensure their protective function.This paper analyzed those common damages in PPPC during routine BSL-4 laboratory operations and provided repair plans which can be used as references for users and maintenance personnel.