This paper analyzed the deformation mechanism in lateral roof roadway of the Ding Wu-3 roadway which was disturbed by repeated mining of close coal seams Wu-8 and Wu-10 in Pingdingshan No. 1 Mine. To determine the str...This paper analyzed the deformation mechanism in lateral roof roadway of the Ding Wu-3 roadway which was disturbed by repeated mining of close coal seams Wu-8 and Wu-10 in Pingdingshan No. 1 Mine. To determine the strata disturbance scope, the strata displacement angle was used to calculate the protection pillar width. A numerical model was built considering the field geological conditions. In simulation, the mining stress borderline was defined as the contour where the induced stress is 1.5 times of the original stress. Simulation results show the mining stress borderline of the lateral roadway extended 91.7 m outward after repeated mining. Then the original stress increased, deforming the road- way of interest. This deformation agreed with the in situ observations. Moreover, the strata displacement angle changed due to repeated mining. Therefore, reselection of the displacement angle was required to design the protective pillar width. Since a constant strata displacement angle was used in traditional design, the orooosed method was beneficial in field cases.展开更多
There are two states for the coal-mass on the goal-side which is in stress equilibrium: the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non- ...There are two states for the coal-mass on the goal-side which is in stress equilibrium: the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non- ultimate equilibrium (the bearing stress in the coal-mass is less than its ultimate bearing stress). To ana- lyze the bearing characteristics of a coal pillar in the state of limit equilibrium and guide the design of pillar width, we established a mechanical analytical model of the non-ultimate equilibrium zone in the coal-mass on the goal-side combined with the limit equilibrium theory as well as adopting the methods of theory analysis and mechanical analysis based on the assumption of a state of non-ultimate equilibrium. The width correction coeffident of the limit equilibrium zone has been given. The influence of mining depth, stress concentration coefficient of the surrounding rock, the non-limit strength of the coal-mass and stability of the coal rock interface has been studied. On this basis, we have confirmed that when the width ofa longwall mining face roadway protection coal pillar is between 11.6 m and 13.16 m in No. 4 coal seam of Xinrui coal mine in Lvliang in Shanxi province the elastic core region in the coal pillar can be assured and the roadway will be located in the area of lower stress which is outside the peak stress. So the revised width of the limit eauilibrium zone is more oractical.展开更多
基金Financial supports from the National Natural Science Foundation of China (No. 51204160)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.SZBF2011-6-B35)+1 种基金the National Science and Technology Support Program of China(No.2012BAK04B06)the Project Funded by State Key Laboratory of Coal Resources and Safe Mining of China(No.SKLCRSM11X03)
文摘This paper analyzed the deformation mechanism in lateral roof roadway of the Ding Wu-3 roadway which was disturbed by repeated mining of close coal seams Wu-8 and Wu-10 in Pingdingshan No. 1 Mine. To determine the strata disturbance scope, the strata displacement angle was used to calculate the protection pillar width. A numerical model was built considering the field geological conditions. In simulation, the mining stress borderline was defined as the contour where the induced stress is 1.5 times of the original stress. Simulation results show the mining stress borderline of the lateral roadway extended 91.7 m outward after repeated mining. Then the original stress increased, deforming the road- way of interest. This deformation agreed with the in situ observations. Moreover, the strata displacement angle changed due to repeated mining. Therefore, reselection of the displacement angle was required to design the protective pillar width. Since a constant strata displacement angle was used in traditional design, the orooosed method was beneficial in field cases.
基金supported by the National Programs for Fundamental Research and Development (No. 2013CB227900)the National Natural Science Foundation of China (Nos. 51204166, 51174195 and 51474209)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘There are two states for the coal-mass on the goal-side which is in stress equilibrium: the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non- ultimate equilibrium (the bearing stress in the coal-mass is less than its ultimate bearing stress). To ana- lyze the bearing characteristics of a coal pillar in the state of limit equilibrium and guide the design of pillar width, we established a mechanical analytical model of the non-ultimate equilibrium zone in the coal-mass on the goal-side combined with the limit equilibrium theory as well as adopting the methods of theory analysis and mechanical analysis based on the assumption of a state of non-ultimate equilibrium. The width correction coeffident of the limit equilibrium zone has been given. The influence of mining depth, stress concentration coefficient of the surrounding rock, the non-limit strength of the coal-mass and stability of the coal rock interface has been studied. On this basis, we have confirmed that when the width ofa longwall mining face roadway protection coal pillar is between 11.6 m and 13.16 m in No. 4 coal seam of Xinrui coal mine in Lvliang in Shanxi province the elastic core region in the coal pillar can be assured and the roadway will be located in the area of lower stress which is outside the peak stress. So the revised width of the limit eauilibrium zone is more oractical.