Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target ...Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.展开更多
BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METH...BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METHODS Real-time polymerase chain reaction was performed to detect miRNA expression in human colorectal cancer tissues and paired normal colorectal tissues.PITA 6 was utilized to predict the targets of miR-363-3p.Dual-luciferase reporter system was used to validate the target of miR-363-3p.Plate colony formation assay and wound-healing assay were performed to evaluate cancer cells’clonogenic survival ability and migration ability,respectively.Cell proliferation was examined by cell counting kit-8 assay.Immunohistochemical staining was used to determine the expression level of interferon-induced transmembrane protein 1(IFITM1)in colorectal cancer tissues and adjacent tissues.The TCGA and GTEx databases were used to compare the expression levels of IFITM1 mRNA in colorectal cancer tissues and normal colorectal tissues and analyze the correlation between the expression levels of IFITM1 mRNA and overall survival and disease-free survival of patients.A colorectal cancer cell line with a deficiency of IFITM1 was constructed,and the regulation effect of IFITM1 on the clonogenic growth of colorectal cancer cells was clarified.RESULTS MiR-363-3p was decreased in colorectal cancer tissues compared to normal colorectal tissues.IFITM1 was characterized as a direct target of miR-363-3p.Overexpression of miR-363-3p led to decreased clonogenic survival,proliferation,and migration of colorectal cancer cells,which could be reversed by forced IFITM1 expression.CONCLUSION MiR-363-3p can constrain clonogenic survival,proliferation,and migration of colorectal cancer cells via targeting IFITM1.展开更多
We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repet...We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.展开更多
[Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone ...[Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone 14-3-3 gene from banana; then the amplified sequence was sequenced and homologically analyzed. [Result] A new cDNA homologous with 14-3-3 protein genes were obtained by RT-PCR and RACE ( rapid amplification of cDNA ends ) approaches. The full length of this cDNA was 866 bp encoding 197 amino acids. Alignment of deduced amino acid sequence with those from other plants revealed that the cDNA shared high homology with 14-3-3 protein genes from other plants, and was designated as Musa acuminata 14-3-3 gene (Ma-14-3-3d). Phylogenetic analysis reveals that Ma-14-3-3d has closer genetic relationship with those from monocotyledon species than those from other species. [Conclusion] Ma-14-3-3d belongs to the same lineage of 14-3-3 from monocotyledon.展开更多
Objective To investigate the effects of 14-3-3 protein overexpression on the 1-methyl-4-phenylpyridinium (MPP^+) induced pheochromocytoma (PC12) cell death and the potential mechanisms. Methods pcDNA3.1(+)-14-...Objective To investigate the effects of 14-3-3 protein overexpression on the 1-methyl-4-phenylpyridinium (MPP^+) induced pheochromocytoma (PC12) cell death and the potential mechanisms. Methods pcDNA3.1(+)-14-3-3 plasmids, which could be expressed in mammalian cell, were constructed and transfected into PC 12 cells with Lipofectamine 2000. The expression of 14-3-3 protein, Bcl-2 protein, and BAD protein were determined by western blot. 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, microplate reader, and flow cytometric analysis were used to measure cell viability, the caspase activity, and apoptotic ratio respectively. Results (1) The expression of 14-3-3 protein increased significantly three weeks after pcDNA3.1(+)-14-3-3 plasmids transfected into PC 12 cells. (2) MPP^+ caused a decrease of cell viability in a dose-dependent manner. At 100μmol/L MPP^+, cell viability reduced approximately 50%. (3) The caspase activity increased along with the MPP^+ concentrations rising and reached its maximum value (0.34 μmol/mg protein) at 100 μmol/L MPP*. However caspase activity decreased significantly when the MPP^+ concentration exceeded 100 μmol/L. (4) Overexpression of 14-3-3 protein decreased the apoptosis ratio of PC 12 cells treated with 100μmol/L MPP^+ from 26.5% to 8.6%. (5) Bcl-2 protein tended to decrease but BAD protein tended to increase after treatment of PC 12 cells with 100 μmol/L MPP^+. Overexpression of 14-3-3 protein significantly increased the cellular level of Bcl-2 protein and decreased that of BAD protein. Conclusion Overexpression of 14-3-3 protein may reduce MPP^+-induced apoptotic cell death in PC12 cells by up-regulating the Bcl-2 expression and down-regulating the BAD expression. These results may provide a promising target for treatment of Parkinson's disease.展开更多
Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mech...Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mechanisms. Methods The viability and apoptosis of PC 12 cells were determinded by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4′,6′-diamidino-2-phenylindole (DAPI) staining, respectively. The expressions of 14-3-3 protein and phospholylated p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. Enzyme-linked immunosorbent assay (ELISA) was used to measure the activity of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Results The cell viability decreased and the number of apoptotic cells increased dramatically in MPP^+ group compared with that in Control group. HPP induced a significant increase in cell viability and a marked decrease in population of apoptotic cells of the MPP^+- treated PC 12 cells, accompanied with up-regulation of 14-3-3 protein and increase of ERK 1/2 and p38 MAPK activities. The 14-3-3 protein expression was positively correlated with the phosphorylation of ERK1/2. Furthermore, inhibition of the ERK1/2 with PD98059 abolished the 14-3-3 protein up-regulation in PC 12 cells induced by HPP. Conclusion HPP protects PC 12 cells against MPP+ toxicity by up-regulating 14-3-3 protein expression through the ERK1/2 and p38 MAPK signaling pathways.展开更多
[Objective] This study aimed to predict the structure of protein OmpH from Pasteurella multocida C47-8 (PmC47-8) strain of yak. [Method] Online BLAST, signal peptide prediction, secondary structure prediction and pr...[Objective] This study aimed to predict the structure of protein OmpH from Pasteurella multocida C47-8 (PmC47-8) strain of yak. [Method] Online BLAST, signal peptide prediction, secondary structure prediction and protein characteristics of sequencing result of gene OmpH from PmC47-8 strain were analyzed. [Result] The similarities of gene OmpH from PmC47-8 with the published 81 OmpH genes were between 84% and 99%; a signal peptide was found with the cleavage sites between 20 and 21 in the polypeptide; secondary structure prediction showed that folding structure accounted for 49.8% and loop structure for 50.2%; it predicted that there were 7 O-glycosylation sites in OmpH protein with the amino acid residual sites of 2, 45, 48, 330, 716, 721, 723, respectively, and 2 N-glycosylation sites with the amino acid residual sites of 15 and 35. [Conclusion] This study lays the foundation for the study on the immunity of OmpH gene from yak.展开更多
As an important agronomic trait, inclination of leaves is crucial Ior crop architecture and grain yields. 10 understand the molecular mechanism controlling rice leaf angles, one rice leaf inclination2 (1c2, three all...As an important agronomic trait, inclination of leaves is crucial Ior crop architecture and grain yields. 10 understand the molecular mechanism controlling rice leaf angles, one rice leaf inclination2 (1c2, three alleles) mutant was identified and functionally characterized. Compared to wild-type plants, lc2 mutants have enlarged leaf angles due to increased cell division in the adaxial epidermis of lamina joint. The LC2 gene was isolated through positional cloning, and encodes a vernalization insensitive 3-like protein. Complementary expression of LC2 reversed the enlarged leaf angles of lc2 plants, confirming its role in controlling leaf inclination. LC2 is mainly expressed in the lamina joint during leaf development, and particularly, is induced by the phytohormones abscisic acid, gibberellic acid, auxin, and brassinosteroids. LC2 is localized in the nucleus and defects of LC2 result in altered expression of cell division and hormone-responsive genes, indicating an important role of LC2 in regulating leaf inclination and mediating hormone effects.展开更多
AIM:To find a possible relationship between inflammation and CA19-9 tumor marker by analyzing data from patients with benign jaundice(BJ) and malignant jaundice(MJ).METHODS:All patients admitted for obstructive jaundi...AIM:To find a possible relationship between inflammation and CA19-9 tumor marker by analyzing data from patients with benign jaundice(BJ) and malignant jaundice(MJ).METHODS:All patients admitted for obstructive jaundice,in the period 2005-2009,were prospectively enrolled in the study,obtaining a total of 102 patients.On admission,all patients underwent complete standard blood test examinations including C-reactive protein(CRP),bilirubin,CA19-9.Patients were considered eligible for the study when they presented obstructive jaundice confirmed by instrumental examinations and increased serum bilirubin levels(total bilirubin > 2.0 mg/dL).The standard cut-off level for CA19-9 was 32 U/mL,whereas for CRP this was 1.5 mg/L.The CA19-9 level was adjusted by dividing it by the value of serum bilirubin or by the CRP value.The patients were divided into 2 groups,MJ and BJ,and after the adjustment a comparison between the 2 groups of patients was performed.Sensitivity,specificity and positive predictive values were calculated before and after the adjustment.RESULTS:Of the 102 patients,51 were affected by BJ and 51 by MJ.Pathologic CA19-9 levels were found in 71.7% of the patients.In the group of 51 BJ patients there were 29(56.9%) males and 22(43.1%) females with a median age of 66 years(range 24-96 years),whereas in the MJ group there were 24(47%) males and 27(53%) females,with a mean age of 70 years(range 30-92 years).Pathologic CA19-9 serum level was found in 82.3% of MJ.CRP levels were pathologic in 66.6% of the patients with BJ and in 49% with MJ.Bilirubin and CA19-9 average levels were significantly higher in MJ compared with BJ(P = 0.000 and P = 0.02),while the CRP level was significantly higher in BJ(P = 0.000).Considering a CA19-9 cut-off level of 32 U/mL,82.3% in the MJ group and 54.9% in the BJ group were positive for CA19-9(P = 0.002).A CA19-9 cut-off of 100 U/mL increases the difference between the two groups:35.3% in BJ and 68.6% in MJ(P = 0.0007).Adjusting the CA19-9 value by dividing it by serum bilirubin level meant that 21.5% in the BJ and 49% in the MJ group remained with a positive CA19-9 value(P = 0.003),while adjusting the CA19-9 value by dividing it by serum CRP value meant that 31.4% in the BJ group and 76.5% in the MJ group still had a positive CA19-9 value(P = 0.000004).Sensitivity,specificity,positive predictive values of CA19-9 > 32 U/mL were 82.3%,45% and 59.1%;when the cutoff was CA19-9 > 100 U/mL they were,respectively,68.6%,64.7% and 66%.When the CA19-9 value was adjusted by dividing it by the bilirubin or CRP values,these became 49%,78.4%,69.4% and 76.5%,68.6%,70.9%,respectively.CONCLUSION:The present study proposes CRP as a new and useful correction factor to improve the diag-nostic value of the CA19-9 tumor marker in patients with cholestatic jaundice.展开更多
Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation ...Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.展开更多
BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheime...BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.展开更多
Objective To develop a rapid multi-residue assay for detecting 16 demanded by the European Union (EU). Methods A recombinant penicillin-binding protein (PBP) 2x* from Streptococcus pneumoniae R6 was expressed in ...Objective To develop a rapid multi-residue assay for detecting 16 demanded by the European Union (EU). Methods A recombinant penicillin-binding protein (PBP) 2x* from Streptococcus pneumoniae R6 was expressed in vitro and six β-1actams were conjugated to HRP by four methods. A rapid multi-residue assay for β-1actams was established with PBP2x* and HRP-conjugate. Results PBP2x* was expressed and purified successfully and the ideal HRP-conjugate was identified. The multi-residue assay was developed. After optimization, penicillin G, ampicillin, amoxicillin, cloxacillin, dicloxacillin, oxacillin, nafcillin, cephalexin, ceftiofur, cefalonium, cefquinome, cefazolin, cefoperazone, cephacetrile, and cephapirin can be detected at levels below MRL in milk with simple pretreatment. Conclusion This assay developed can detect all 16 β-1actams demanded by the European Union (EU). The whole procedure takes only 45 min and can detect 42 samples and the standards with duplicate analysis.展开更多
To explore the differences of carbohydrate metabolism in two tomato species and discuss the possible regulation of 14-3-3 proteins on the sucrose phosphate synthase (SPS) activity, we determined the contents of solu...To explore the differences of carbohydrate metabolism in two tomato species and discuss the possible regulation of 14-3-3 proteins on the sucrose phosphate synthase (SPS) activity, we determined the contents of soluble sugar and starch through high performance liquid chromatography (HPLC). The activities of sugar-metabolizing enzymes were assayed in desalted extract, and the relative expression levels of related genes in sugar metabolism were determined though real-time RT-PCR. The results indicated that glucose and fructose were mainly accumulated during the maturation of the fruit because of the high acid invertase (AI) and neutral invertase (NI) in Micro-Tom (Solanum lycopersicum) fruit, while in Solanum chmielewskii fruit, SPS which went along with the change of sucrose content led to the rapid sucrose increase during the fruit ripening. TFT1 and TFT10, belonging to 14-3-3 protein in tomato, were likely to down-regulated SPS activity during young and intumescence period.展开更多
AIM: To investigate the molecular mechanism for regulation of cholesterol metabolism by hepatitis C virus(HCV) core protein in Hep G2 cells.METHODS: HCV genotype 1b core protein was cloned and expressed in Hep G2 cell...AIM: To investigate the molecular mechanism for regulation of cholesterol metabolism by hepatitis C virus(HCV) core protein in Hep G2 cells.METHODS: HCV genotype 1b core protein was cloned and expressed in Hep G2 cells. The cholesterol content was determined after transfection. The expression of sterol regulatory element binding protein 2(SREBP2) and the rate-limiting enzyme in cholesterol synthesis(HMGCR) was measured by quantitative real-time PCR and immunoblotting after transfection. The effects of core protein on the SREBP2 promoter and 3'-untranslated region were analyzed by luciferase assay. We used different target predictive algorithms, micro RNA(mi RNA) mimics/inhibitors, and site-directed mutation to identify a putative target of a particular mi RNA.RESULTS: HCV core protein expression in Hep G2 cells increased the total intracellular cholesterol level(4.05 ± 0.17 vs 6.47 ± 0.68, P = 0.001), and this increase corresponded to an increase in SREBP2 and HMGCR m RNA levels(P = 0.009 and 0.037, respectively) and protein expression. The molecular mechanism studyrevealed that the HCV core protein increased the expression of SREBP2 by enhancing its promoter activity(P = 0.004). In addition, mi R-185-5p expression was tightly regulated by the HCV core protein(P = 0.041). Moreover, overexpression of mi R-185-5p repressed the SREBP2 m RNA level(P = 0.022) and protein expression. In contrast, inhibition of mi R-185-5p caused upregulation of SREBP2 protein expression. mi R-185-5p was involved in the regulation of SREBP2 expression by HCV core protein. CONCLUSION: HCV core protein disturbs the cholesterol homeostasis in Hep G2 cells via the SREBP2 pathway; mi R-185-5p is involved in the regulation of SREBP2 by the core protein.展开更多
AIM: To find and identify specific nuclear matrix proteins associated with proliferation and differentiation of carcinoma cells, which will be potential markers for cancer diagnosis and targets in cancer therapy. MET...AIM: To find and identify specific nuclear matrix proteins associated with proliferation and differentiation of carcinoma cells, which will be potential markers for cancer diagnosis and targets in cancer therapy. METHODS: Nuclear matrix proteins were selectively extracted from MGcS0-3 cells treated with or without hexamethylamine bisacetamide (HMBA), and subjected to 2-D gel electrophoresis. The resulted protein patterns were analyzed by Melanie software. Spots of nuclear matrix proteins differentially expressed were excised and subjected to in situ digestion with trypsin. Peptide masses were obtained by matrix-assisted laser-desorption/ ionization time of flight mass spectrometry (MALDI-TOFMS) analysis and submitted for database searching using Mascot tool. RESULTS: The MGc80-3 cells were induced into differentiation by HMBA. There were 22 protein spots which changed remarkably in the nuclear matrix, from differentiation of MGcS0-3 cells compared to control. Eleven of which were identified. Seven proteinsactin, prohibitin, porin 31HL, heterogeneous nuclear dbonucleoprotein A2/B1, vimentin, ATP synthase, and heat shock protein 60 were downregulated, whereas three proteins - heat shock protein gp96, heat shock protein 90-beta, and valosin-containing protein were upregulated, and the oxygen-regulated protein was only found in the differentiated MGc80-3 cells. CONCLUSION: The induced differentiation of carcinoma cells is accompanied by the changes of nuclear matrix proteins. Further characterization of those proteins will show the mechanism of cellular proliferation and differentiation, as well as cancer differentiation.展开更多
hPFTAIRE1 (PFTK1), a Cdc2-related protein kinase, is highly expressed in human brain. It exhibits cytoplasmic distribution in Hela cells, although it contains two nuclear localization signals (NLSs) in its N-termi...hPFTAIRE1 (PFTK1), a Cdc2-related protein kinase, is highly expressed in human brain. It exhibits cytoplasmic distribution in Hela cells, although it contains two nuclear localization signals (NLSs) in its N-terminus. To search for its substrates and regulatory components, we screened a two-hybrid library by using the full-length hPFTAIRE1 as a bait. Four 14-3-3 isoforms (β,ε,η,τ) were identified interacting with the hPFTAIRE1. We found a putative 14-3-3 binding consensus motif(RHSSPSS) in the hPFTAIRE 1, which overlapped with its second NLS. Deletion of the RHSSPSS motif or substitution of Ser^119 gwithAla in the conserved binding motif abolished the specific interaction between the hPFTAIRE 1 and the 14-3 -3 proteins. The mutant S 120A hPFTAIRE1 also showed a weak interaction to the 14-3-3 proteins. The results suggested that the Ser^119 is crucial for the interaction between hPFTAIREI and the 14-3-3 proteins. All the hPFTAIRE1 mutants distributed in cytoplasm of Hela cells and human neuroblastoma cells (SH-SY5Y) when fused to the C-terminus of a green fluorescent protein (GFP), indicating that binding with the 14-3-3 proteins does not contribute to the subcellular localization of the hPFTAIRE1, although the binding may be involved in its signaling regulation.展开更多
BACKGROUND: The progressive degeneration of dopaminergic neurons in Parkinson's disease is associated with an activated glial reaction, combined with an inflammatory process. These responses lead to the production o...BACKGROUND: The progressive degeneration of dopaminergic neurons in Parkinson's disease is associated with an activated glial reaction, combined with an inflammatory process. These responses lead to the production of cytokines, such as interferon- γ, tumor necrosis factor- α (TNF- α ), and interleukin-1 β. In addition, 14-3-3 protein is a component of Lewy bodies in Parkinson's disease. OBJECTIVE: To observe the expression of 14-3-3 γ and ζ protein, as well as TNF-α, in mouse microglia, as well as changes after lipopolysaccharide (LPS) activation. To investigate possible mechanisms of dopaminergic neuronal injury due to activated microglia. To and clarify the immune response mechanisms of Parkinson's disease. DESIGN: Randomized controlled observation, cell study.SETTING: Laboratory of Department of Neurology, the Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: The BV-2 immortalized murine microglia cell line was purchased from China Unit cell center. LPS was provided by Sigma Company. Cell cultures were purchased from Gibco. Phospho-(Ser) 14-3-3 binding motif antibody was purchased from Santa Cruz Biotechnologies. FITC was provided by Linfei Biotechnology, Wuhan, China. TNF- α ELISA was provided by Jingmei Biotech Co, Wuhan, China. The flow cytometer was provided by Becton Dickinson, Canada. METHODS: The present experiment was performed at the Laboratory of Department of Neurology, the Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology from April to December 2006. The microglial cell line, BV-2, was cultured in vitro and stimulated with LPS for 2, 6, 12, and 24 hours. BV-2 cultures without LPS were used as controls. MAIN OUTCOME MEASURES: Expression of 14-3-3 γ protein was detected by flow cytometry. 14-3-3 ζ percentage expression and the mean fluorescence intensity was detected by immunofluorescence. TNF- α expression was detected by ELISA. RESULTS: 14-3-3 γ protein expression analysis: following LPS-induction in BV-2 cells, the fluorescence intensity of the 14-3-3 γ proteins gradually decreased. The 12 and 24 hours groups exhibited significantly lower expression than the normal control group (P 〈 0.05). 14-3-3 ζ percentage expression and the mean fluorescence intensity: the percentage of 14-3-3 ζ protein expression gradually decreased with LPS stimulation. The mean fluorescence intensity from the 6, 12, and 24 hours groups was significantly less than the control group (P 〈 0.05). TNF-α expression: resting BV-2 cells did not express TNF-α. Following 2 hours of LPS stimulation, TNF-α was highly expressed in BV-2 cells, but decreased again by 24 hours. CONCLUSION: Dopaminergic neuronal injury, due to activated microglial cells, might be related to the participation of 14-3-3 proteins and the release of TNF-α.展开更多
Benzene is an established leukotoxin and leukemogen in humans. We have previously re- ported that exposure of workers to benzene and to benzene metabolite hydroquinone in cultured cells induced DNA-dependent protein k...Benzene is an established leukotoxin and leukemogen in humans. We have previously re- ported that exposure of workers to benzene and to benzene metabolite hydroquinone in cultured cells induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to mediate the cellular response to DNA double strand break (DSB) caused by DNA-damaging metabolites. In this study, we used a new, small molecule, a selective inhibitor of DNA-PKcs, 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026), as a probe to analyze the molecular events and pathways in hydroquinone-induced DNA DSB repair and apoptosis. Inhibition of DNA-PKcs by NU7026 markedly potentiated the apoptotic and growth inhibitory effects of hydroquinone in proerythroid leukemic K562 cells in a dose-dependent manner. Treatment with NU7026 did not alter the production of reactive oxygen species and oxidative stress by hydroquinone but repressed the protein level of DNA-PKcs and blocked the induction of the kinase mRNA and protein expression by hydroquinone. Moreover, hydroquinone increased the phos- phorylation of Akt to activate Akt, whereas co-treatment with NU7026 prevented the activation of Akt by hydroquinone. Lastly, hydroquinone and NU7026 exhibited synergistic effects on promoting apop- tosis by increasing the protein levels of pro-apoptotic proteins Bax and caspase-3 but decreasing the protein expression of anti-apoptotic protein Bcl-2. Taken together, the findings reveal a central role of DNA-PKcs in hydroquinone-induced hematotoxicity in which it coordinates DNA DSB repair, cell cycle progression, and apoptosis to regulate the response to hydroquinone-induced DNA damage.展开更多
OVATE family proteins(OFPs)are plant-specific proteins with a conserved OVATE domain that regulate plant growth and development.Although OFPs have been studied in several species,their biological functions remain larg...OVATE family proteins(OFPs)are plant-specific proteins with a conserved OVATE domain that regulate plant growth and development.Although OFPs have been studied in several species,their biological functions remain largely unknown in cucumber(Cucumis sativus L.).This study identified 19 Cs OFPs distributed on seven chromosomes in cucumber.Most Cs OFP genes were expressed in reproductive organs,but with different expression patterns.Ectopic expression of Cs OFP12-16c in Arabidopsis resulted in shorter and blunt siliques.The overall results indicated that Cs OFP12-16c regulates silique development in Arabidopsis and may have a similar function in cucumber.展开更多
基金supported by Guangdong Basic and Applied Basic Research Foundation(2023A1515010969)Natural Science Foundation of Top Talent of SZTU(GDRC202305).
文摘Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.
文摘BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METHODS Real-time polymerase chain reaction was performed to detect miRNA expression in human colorectal cancer tissues and paired normal colorectal tissues.PITA 6 was utilized to predict the targets of miR-363-3p.Dual-luciferase reporter system was used to validate the target of miR-363-3p.Plate colony formation assay and wound-healing assay were performed to evaluate cancer cells’clonogenic survival ability and migration ability,respectively.Cell proliferation was examined by cell counting kit-8 assay.Immunohistochemical staining was used to determine the expression level of interferon-induced transmembrane protein 1(IFITM1)in colorectal cancer tissues and adjacent tissues.The TCGA and GTEx databases were used to compare the expression levels of IFITM1 mRNA in colorectal cancer tissues and normal colorectal tissues and analyze the correlation between the expression levels of IFITM1 mRNA and overall survival and disease-free survival of patients.A colorectal cancer cell line with a deficiency of IFITM1 was constructed,and the regulation effect of IFITM1 on the clonogenic growth of colorectal cancer cells was clarified.RESULTS MiR-363-3p was decreased in colorectal cancer tissues compared to normal colorectal tissues.IFITM1 was characterized as a direct target of miR-363-3p.Overexpression of miR-363-3p led to decreased clonogenic survival,proliferation,and migration of colorectal cancer cells,which could be reversed by forced IFITM1 expression.CONCLUSION MiR-363-3p can constrain clonogenic survival,proliferation,and migration of colorectal cancer cells via targeting IFITM1.
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Fund,No.22HHXBSS00047(to PL)the National Natural Science Foundation of China,Nos.82072166(to PL),82071394(to XG)+4 种基金Science and Technology Planning Project of Tianjin,No.20YFZCSY00030(to PL)Science and Technology Project of Tianjin Municipal Health Commission,No.TJWJ2021QN005(to XG)Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-006ATianjin Municipal Education Commission Scientific Research Program Project,No.2020KJ164(to JZ)China Postdoctoral Science Foundation,No.2022M712392(to ZY).
文摘We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.
文摘[Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone 14-3-3 gene from banana; then the amplified sequence was sequenced and homologically analyzed. [Result] A new cDNA homologous with 14-3-3 protein genes were obtained by RT-PCR and RACE ( rapid amplification of cDNA ends ) approaches. The full length of this cDNA was 866 bp encoding 197 amino acids. Alignment of deduced amino acid sequence with those from other plants revealed that the cDNA shared high homology with 14-3-3 protein genes from other plants, and was designated as Musa acuminata 14-3-3 gene (Ma-14-3-3d). Phylogenetic analysis reveals that Ma-14-3-3d has closer genetic relationship with those from monocotyledon species than those from other species. [Conclusion] Ma-14-3-3d belongs to the same lineage of 14-3-3 from monocotyledon.
基金supported by National Natural Science Foundation of China(No:30570627).
文摘Objective To investigate the effects of 14-3-3 protein overexpression on the 1-methyl-4-phenylpyridinium (MPP^+) induced pheochromocytoma (PC12) cell death and the potential mechanisms. Methods pcDNA3.1(+)-14-3-3 plasmids, which could be expressed in mammalian cell, were constructed and transfected into PC 12 cells with Lipofectamine 2000. The expression of 14-3-3 protein, Bcl-2 protein, and BAD protein were determined by western blot. 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, microplate reader, and flow cytometric analysis were used to measure cell viability, the caspase activity, and apoptotic ratio respectively. Results (1) The expression of 14-3-3 protein increased significantly three weeks after pcDNA3.1(+)-14-3-3 plasmids transfected into PC 12 cells. (2) MPP^+ caused a decrease of cell viability in a dose-dependent manner. At 100μmol/L MPP^+, cell viability reduced approximately 50%. (3) The caspase activity increased along with the MPP^+ concentrations rising and reached its maximum value (0.34 μmol/mg protein) at 100 μmol/L MPP*. However caspase activity decreased significantly when the MPP^+ concentration exceeded 100 μmol/L. (4) Overexpression of 14-3-3 protein decreased the apoptosis ratio of PC 12 cells treated with 100μmol/L MPP^+ from 26.5% to 8.6%. (5) Bcl-2 protein tended to decrease but BAD protein tended to increase after treatment of PC 12 cells with 100 μmol/L MPP^+. Overexpression of 14-3-3 protein significantly increased the cellular level of Bcl-2 protein and decreased that of BAD protein. Conclusion Overexpression of 14-3-3 protein may reduce MPP^+-induced apoptotic cell death in PC12 cells by up-regulating the Bcl-2 expression and down-regulating the BAD expression. These results may provide a promising target for treatment of Parkinson's disease.
基金the National Natural Science Foundation of China (No. 30570627)
文摘Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mechanisms. Methods The viability and apoptosis of PC 12 cells were determinded by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4′,6′-diamidino-2-phenylindole (DAPI) staining, respectively. The expressions of 14-3-3 protein and phospholylated p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. Enzyme-linked immunosorbent assay (ELISA) was used to measure the activity of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Results The cell viability decreased and the number of apoptotic cells increased dramatically in MPP^+ group compared with that in Control group. HPP induced a significant increase in cell viability and a marked decrease in population of apoptotic cells of the MPP^+- treated PC 12 cells, accompanied with up-regulation of 14-3-3 protein and increase of ERK 1/2 and p38 MAPK activities. The 14-3-3 protein expression was positively correlated with the phosphorylation of ERK1/2. Furthermore, inhibition of the ERK1/2 with PD98059 abolished the 14-3-3 protein up-regulation in PC 12 cells induced by HPP. Conclusion HPP protects PC 12 cells against MPP+ toxicity by up-regulating 14-3-3 protein expression through the ERK1/2 and p38 MAPK signaling pathways.
基金Supported by the Project for High-level Talents of Qinghai University (2008-QGC-7)~~
文摘[Objective] This study aimed to predict the structure of protein OmpH from Pasteurella multocida C47-8 (PmC47-8) strain of yak. [Method] Online BLAST, signal peptide prediction, secondary structure prediction and protein characteristics of sequencing result of gene OmpH from PmC47-8 strain were analyzed. [Result] The similarities of gene OmpH from PmC47-8 with the published 81 OmpH genes were between 84% and 99%; a signal peptide was found with the cleavage sites between 20 and 21 in the polypeptide; secondary structure prediction showed that folding structure accounted for 49.8% and loop structure for 50.2%; it predicted that there were 7 O-glycosylation sites in OmpH protein with the amino acid residual sites of 2, 45, 48, 330, 716, 721, 723, respectively, and 2 N-glycosylation sites with the amino acid residual sites of 15 and 35. [Conclusion] This study lays the foundation for the study on the immunity of OmpH gene from yak.
文摘As an important agronomic trait, inclination of leaves is crucial Ior crop architecture and grain yields. 10 understand the molecular mechanism controlling rice leaf angles, one rice leaf inclination2 (1c2, three alleles) mutant was identified and functionally characterized. Compared to wild-type plants, lc2 mutants have enlarged leaf angles due to increased cell division in the adaxial epidermis of lamina joint. The LC2 gene was isolated through positional cloning, and encodes a vernalization insensitive 3-like protein. Complementary expression of LC2 reversed the enlarged leaf angles of lc2 plants, confirming its role in controlling leaf inclination. LC2 is mainly expressed in the lamina joint during leaf development, and particularly, is induced by the phytohormones abscisic acid, gibberellic acid, auxin, and brassinosteroids. LC2 is localized in the nucleus and defects of LC2 result in altered expression of cell division and hormone-responsive genes, indicating an important role of LC2 in regulating leaf inclination and mediating hormone effects.
文摘AIM:To find a possible relationship between inflammation and CA19-9 tumor marker by analyzing data from patients with benign jaundice(BJ) and malignant jaundice(MJ).METHODS:All patients admitted for obstructive jaundice,in the period 2005-2009,were prospectively enrolled in the study,obtaining a total of 102 patients.On admission,all patients underwent complete standard blood test examinations including C-reactive protein(CRP),bilirubin,CA19-9.Patients were considered eligible for the study when they presented obstructive jaundice confirmed by instrumental examinations and increased serum bilirubin levels(total bilirubin > 2.0 mg/dL).The standard cut-off level for CA19-9 was 32 U/mL,whereas for CRP this was 1.5 mg/L.The CA19-9 level was adjusted by dividing it by the value of serum bilirubin or by the CRP value.The patients were divided into 2 groups,MJ and BJ,and after the adjustment a comparison between the 2 groups of patients was performed.Sensitivity,specificity and positive predictive values were calculated before and after the adjustment.RESULTS:Of the 102 patients,51 were affected by BJ and 51 by MJ.Pathologic CA19-9 levels were found in 71.7% of the patients.In the group of 51 BJ patients there were 29(56.9%) males and 22(43.1%) females with a median age of 66 years(range 24-96 years),whereas in the MJ group there were 24(47%) males and 27(53%) females,with a mean age of 70 years(range 30-92 years).Pathologic CA19-9 serum level was found in 82.3% of MJ.CRP levels were pathologic in 66.6% of the patients with BJ and in 49% with MJ.Bilirubin and CA19-9 average levels were significantly higher in MJ compared with BJ(P = 0.000 and P = 0.02),while the CRP level was significantly higher in BJ(P = 0.000).Considering a CA19-9 cut-off level of 32 U/mL,82.3% in the MJ group and 54.9% in the BJ group were positive for CA19-9(P = 0.002).A CA19-9 cut-off of 100 U/mL increases the difference between the two groups:35.3% in BJ and 68.6% in MJ(P = 0.0007).Adjusting the CA19-9 value by dividing it by serum bilirubin level meant that 21.5% in the BJ and 49% in the MJ group remained with a positive CA19-9 value(P = 0.003),while adjusting the CA19-9 value by dividing it by serum CRP value meant that 31.4% in the BJ group and 76.5% in the MJ group still had a positive CA19-9 value(P = 0.000004).Sensitivity,specificity,positive predictive values of CA19-9 > 32 U/mL were 82.3%,45% and 59.1%;when the cutoff was CA19-9 > 100 U/mL they were,respectively,68.6%,64.7% and 66%.When the CA19-9 value was adjusted by dividing it by the bilirubin or CRP values,these became 49%,78.4%,69.4% and 76.5%,68.6%,70.9%,respectively.CONCLUSION:The present study proposes CRP as a new and useful correction factor to improve the diag-nostic value of the CA19-9 tumor marker in patients with cholestatic jaundice.
文摘Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.
基金the National Natural Science Foundation of China, No: 30560189
文摘BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.
文摘Objective To develop a rapid multi-residue assay for detecting 16 demanded by the European Union (EU). Methods A recombinant penicillin-binding protein (PBP) 2x* from Streptococcus pneumoniae R6 was expressed in vitro and six β-1actams were conjugated to HRP by four methods. A rapid multi-residue assay for β-1actams was established with PBP2x* and HRP-conjugate. Results PBP2x* was expressed and purified successfully and the ideal HRP-conjugate was identified. The multi-residue assay was developed. After optimization, penicillin G, ampicillin, amoxicillin, cloxacillin, dicloxacillin, oxacillin, nafcillin, cephalexin, ceftiofur, cefalonium, cefquinome, cefazolin, cefoperazone, cephacetrile, and cephapirin can be detected at levels below MRL in milk with simple pretreatment. Conclusion This assay developed can detect all 16 β-1actams demanded by the European Union (EU). The whole procedure takes only 45 min and can detect 42 samples and the standards with duplicate analysis.
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2011BAD12B03)
文摘To explore the differences of carbohydrate metabolism in two tomato species and discuss the possible regulation of 14-3-3 proteins on the sucrose phosphate synthase (SPS) activity, we determined the contents of soluble sugar and starch through high performance liquid chromatography (HPLC). The activities of sugar-metabolizing enzymes were assayed in desalted extract, and the relative expression levels of related genes in sugar metabolism were determined though real-time RT-PCR. The results indicated that glucose and fructose were mainly accumulated during the maturation of the fruit because of the high acid invertase (AI) and neutral invertase (NI) in Micro-Tom (Solanum lycopersicum) fruit, while in Solanum chmielewskii fruit, SPS which went along with the change of sucrose content led to the rapid sucrose increase during the fruit ripening. TFT1 and TFT10, belonging to 14-3-3 protein in tomato, were likely to down-regulated SPS activity during young and intumescence period.
基金Supported by Medical Specialty Development Projects of Beijing Municipal Administration of Hospitals,No.ZYLX201402Ministry of Education of The People’s Republic of China,No.20121107110012+1 种基金Beijing Municipal Commission of Education,No.11320016Collaborative Innovation Center of Infectious Diseases and Beijing Key Laboratory of Emerging Infectious Diseases,Beijing,China
文摘AIM: To investigate the molecular mechanism for regulation of cholesterol metabolism by hepatitis C virus(HCV) core protein in Hep G2 cells.METHODS: HCV genotype 1b core protein was cloned and expressed in Hep G2 cells. The cholesterol content was determined after transfection. The expression of sterol regulatory element binding protein 2(SREBP2) and the rate-limiting enzyme in cholesterol synthesis(HMGCR) was measured by quantitative real-time PCR and immunoblotting after transfection. The effects of core protein on the SREBP2 promoter and 3'-untranslated region were analyzed by luciferase assay. We used different target predictive algorithms, micro RNA(mi RNA) mimics/inhibitors, and site-directed mutation to identify a putative target of a particular mi RNA.RESULTS: HCV core protein expression in Hep G2 cells increased the total intracellular cholesterol level(4.05 ± 0.17 vs 6.47 ± 0.68, P = 0.001), and this increase corresponded to an increase in SREBP2 and HMGCR m RNA levels(P = 0.009 and 0.037, respectively) and protein expression. The molecular mechanism studyrevealed that the HCV core protein increased the expression of SREBP2 by enhancing its promoter activity(P = 0.004). In addition, mi R-185-5p expression was tightly regulated by the HCV core protein(P = 0.041). Moreover, overexpression of mi R-185-5p repressed the SREBP2 m RNA level(P = 0.022) and protein expression. In contrast, inhibition of mi R-185-5p caused upregulation of SREBP2 protein expression. mi R-185-5p was involved in the regulation of SREBP2 expression by HCV core protein. CONCLUSION: HCV core protein disturbs the cholesterol homeostasis in Hep G2 cells via the SREBP2 pathway; mi R-185-5p is involved in the regulation of SREBP2 by the core protein.
基金Supported by the National Natural Science Foundation of China,No. 30470877the Natural Science Foundation of Fujian Province, No. C0310003
文摘AIM: To find and identify specific nuclear matrix proteins associated with proliferation and differentiation of carcinoma cells, which will be potential markers for cancer diagnosis and targets in cancer therapy. METHODS: Nuclear matrix proteins were selectively extracted from MGcS0-3 cells treated with or without hexamethylamine bisacetamide (HMBA), and subjected to 2-D gel electrophoresis. The resulted protein patterns were analyzed by Melanie software. Spots of nuclear matrix proteins differentially expressed were excised and subjected to in situ digestion with trypsin. Peptide masses were obtained by matrix-assisted laser-desorption/ ionization time of flight mass spectrometry (MALDI-TOFMS) analysis and submitted for database searching using Mascot tool. RESULTS: The MGc80-3 cells were induced into differentiation by HMBA. There were 22 protein spots which changed remarkably in the nuclear matrix, from differentiation of MGcS0-3 cells compared to control. Eleven of which were identified. Seven proteinsactin, prohibitin, porin 31HL, heterogeneous nuclear dbonucleoprotein A2/B1, vimentin, ATP synthase, and heat shock protein 60 were downregulated, whereas three proteins - heat shock protein gp96, heat shock protein 90-beta, and valosin-containing protein were upregulated, and the oxygen-regulated protein was only found in the differentiated MGc80-3 cells. CONCLUSION: The induced differentiation of carcinoma cells is accompanied by the changes of nuclear matrix proteins. Further characterization of those proteins will show the mechanism of cellular proliferation and differentiation, as well as cancer differentiation.
基金grants from National Natural Science Foundation of China (Nos. 30400073 ,30330010).
文摘hPFTAIRE1 (PFTK1), a Cdc2-related protein kinase, is highly expressed in human brain. It exhibits cytoplasmic distribution in Hela cells, although it contains two nuclear localization signals (NLSs) in its N-terminus. To search for its substrates and regulatory components, we screened a two-hybrid library by using the full-length hPFTAIRE1 as a bait. Four 14-3-3 isoforms (β,ε,η,τ) were identified interacting with the hPFTAIRE1. We found a putative 14-3-3 binding consensus motif(RHSSPSS) in the hPFTAIRE 1, which overlapped with its second NLS. Deletion of the RHSSPSS motif or substitution of Ser^119 gwithAla in the conserved binding motif abolished the specific interaction between the hPFTAIRE 1 and the 14-3 -3 proteins. The mutant S 120A hPFTAIRE1 also showed a weak interaction to the 14-3-3 proteins. The results suggested that the Ser^119 is crucial for the interaction between hPFTAIREI and the 14-3-3 proteins. All the hPFTAIRE1 mutants distributed in cytoplasm of Hela cells and human neuroblastoma cells (SH-SY5Y) when fused to the C-terminus of a green fluorescent protein (GFP), indicating that binding with the 14-3-3 proteins does not contribute to the subcellular localization of the hPFTAIRE1, although the binding may be involved in its signaling regulation.
文摘BACKGROUND: The progressive degeneration of dopaminergic neurons in Parkinson's disease is associated with an activated glial reaction, combined with an inflammatory process. These responses lead to the production of cytokines, such as interferon- γ, tumor necrosis factor- α (TNF- α ), and interleukin-1 β. In addition, 14-3-3 protein is a component of Lewy bodies in Parkinson's disease. OBJECTIVE: To observe the expression of 14-3-3 γ and ζ protein, as well as TNF-α, in mouse microglia, as well as changes after lipopolysaccharide (LPS) activation. To investigate possible mechanisms of dopaminergic neuronal injury due to activated microglia. To and clarify the immune response mechanisms of Parkinson's disease. DESIGN: Randomized controlled observation, cell study.SETTING: Laboratory of Department of Neurology, the Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: The BV-2 immortalized murine microglia cell line was purchased from China Unit cell center. LPS was provided by Sigma Company. Cell cultures were purchased from Gibco. Phospho-(Ser) 14-3-3 binding motif antibody was purchased from Santa Cruz Biotechnologies. FITC was provided by Linfei Biotechnology, Wuhan, China. TNF- α ELISA was provided by Jingmei Biotech Co, Wuhan, China. The flow cytometer was provided by Becton Dickinson, Canada. METHODS: The present experiment was performed at the Laboratory of Department of Neurology, the Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology from April to December 2006. The microglial cell line, BV-2, was cultured in vitro and stimulated with LPS for 2, 6, 12, and 24 hours. BV-2 cultures without LPS were used as controls. MAIN OUTCOME MEASURES: Expression of 14-3-3 γ protein was detected by flow cytometry. 14-3-3 ζ percentage expression and the mean fluorescence intensity was detected by immunofluorescence. TNF- α expression was detected by ELISA. RESULTS: 14-3-3 γ protein expression analysis: following LPS-induction in BV-2 cells, the fluorescence intensity of the 14-3-3 γ proteins gradually decreased. The 12 and 24 hours groups exhibited significantly lower expression than the normal control group (P 〈 0.05). 14-3-3 ζ percentage expression and the mean fluorescence intensity: the percentage of 14-3-3 ζ protein expression gradually decreased with LPS stimulation. The mean fluorescence intensity from the 6, 12, and 24 hours groups was significantly less than the control group (P 〈 0.05). TNF-α expression: resting BV-2 cells did not express TNF-α. Following 2 hours of LPS stimulation, TNF-α was highly expressed in BV-2 cells, but decreased again by 24 hours. CONCLUSION: Dopaminergic neuronal injury, due to activated microglial cells, might be related to the participation of 14-3-3 proteins and the release of TNF-α.
文摘Benzene is an established leukotoxin and leukemogen in humans. We have previously re- ported that exposure of workers to benzene and to benzene metabolite hydroquinone in cultured cells induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to mediate the cellular response to DNA double strand break (DSB) caused by DNA-damaging metabolites. In this study, we used a new, small molecule, a selective inhibitor of DNA-PKcs, 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026), as a probe to analyze the molecular events and pathways in hydroquinone-induced DNA DSB repair and apoptosis. Inhibition of DNA-PKcs by NU7026 markedly potentiated the apoptotic and growth inhibitory effects of hydroquinone in proerythroid leukemic K562 cells in a dose-dependent manner. Treatment with NU7026 did not alter the production of reactive oxygen species and oxidative stress by hydroquinone but repressed the protein level of DNA-PKcs and blocked the induction of the kinase mRNA and protein expression by hydroquinone. Moreover, hydroquinone increased the phos- phorylation of Akt to activate Akt, whereas co-treatment with NU7026 prevented the activation of Akt by hydroquinone. Lastly, hydroquinone and NU7026 exhibited synergistic effects on promoting apop- tosis by increasing the protein levels of pro-apoptotic proteins Bax and caspase-3 but decreasing the protein expression of anti-apoptotic protein Bcl-2. Taken together, the findings reveal a central role of DNA-PKcs in hydroquinone-induced hematotoxicity in which it coordinates DNA DSB repair, cell cycle progression, and apoptosis to regulate the response to hydroquinone-induced DNA damage.
基金supported by the National Natural Science Foundation of China(31772315 and 31572132)the Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects,China(CEFF-PXM2019_014207_000032)。
文摘OVATE family proteins(OFPs)are plant-specific proteins with a conserved OVATE domain that regulate plant growth and development.Although OFPs have been studied in several species,their biological functions remain largely unknown in cucumber(Cucumis sativus L.).This study identified 19 Cs OFPs distributed on seven chromosomes in cucumber.Most Cs OFP genes were expressed in reproductive organs,but with different expression patterns.Ectopic expression of Cs OFP12-16c in Arabidopsis resulted in shorter and blunt siliques.The overall results indicated that Cs OFP12-16c regulates silique development in Arabidopsis and may have a similar function in cucumber.