Background:To develop a protein-protein interaction network of Paroxysmal nocturnal hemoglobinuria(PNH)and Aplastic anemia(AA)based on genetic genes and to predict pathways underlying the molecular complexes in the ne...Background:To develop a protein-protein interaction network of Paroxysmal nocturnal hemoglobinuria(PNH)and Aplastic anemia(AA)based on genetic genes and to predict pathways underlying the molecular complexes in the network.Methods:In this research,the PNH and AA-related genes were screened through Online Mendelian Inheritance in Man(OMIM).The plugins and Cytoscape were used to search literature and build a protein-protein interaction network.Results:The protein-protein interaction network contains two molecular complexes that are five higher than the correlation integral values.The target genes of this study were obtained:CD59,STAT3,TERC,TNF,AKT1,C5AR1,EPO,IL6,IL10 and so on.We also found that many factors regulate biological behaviors:neutrophils,macrophages,vascular endothelial growth factor,immunoglobulin,interleukin,cytokine receptor,interleukin-6 receptor,tumor necrosis factor,and so on.This research provides a bioinformatics foundation for further explaining the mechanism of common development of both.Conclusion:This indicates that the PNH and AA is a complex process regulated by many cellular pathways and multiple genes.展开更多
BACKGROUND Studies show that the antifibrotic mechanism of taurine may involve its inhibition of the activation and proliferation of hepatic stellate cells(HSCs). Since the molecular mechanism of taurine-mediated anti...BACKGROUND Studies show that the antifibrotic mechanism of taurine may involve its inhibition of the activation and proliferation of hepatic stellate cells(HSCs). Since the molecular mechanism of taurine-mediated antifibrotic activity has not been fully unveiled and is little studied, it is imperative to use "omics" methods to systematically investigate the molecular mechanism by which taurine inhibits liver fibrosis.AIM To establish a network including transcriptomic and protein-protein interaction data to elucidate the molecular mechanism of taurine-induced HSC apoptosis.METHODS We used microarrays, bioinformatics, protein-protein interaction(PPI) network,and sub-modules to investigate taurine-induced changes in gene expression in human HSCs(LX-2). Subsequently, all of the differentially expressed genes(DEGs) were subjected to gene ontology function and Kyoto encyclopedia of genes and genomes pathway enrichment analysis. Furthermore, the interactions of DEGs were explored in a human PPI network, and sub-modules of the DEGs interaction network were analyzed using Cytoscape software.RESULTS A total of 635 DEGs were identified in taurine-treated HSCs when compared with the controls. Of these, 304 genes were statistically significantly up-regulated, and 331 down-regulated. Most of these DEGs were mainly located on the membrane and extracellular region, and are involved in the biological processes of signal transduction, cell proliferation, positive regulation of extracellular regulated protein kinases 1(ERK1) and ERK2 cascade, extrinsic apoptotic signaling pathway and so on. Fifteen significantly enriched pathways with DEGs were identified, including mitogen-activated protein kinase(MAPK) signaling pathway, peroxisome proliferators-activated receptor signaling pathway,estrogen signaling pathway, Th1 and Th2 cell differentiation, cyclic adenosine monophosphate signaling pathway and so on. By integrating the transcriptomics and human PPI data, nine critical genes, including MMP2, MMP9, MMP21,TIMP3, KLF10, CX3CR1, TGFB1, VEGFB, and EGF, were identified in the PPI network analysis.CONCLUSION Taurine promotes the apoptosis of HSCs via up-regulating TGFB1 and then activating the p38 MAPK-JNK-Caspase9/8/3 pathway. These findings enhance the understanding of the molecular mechanism of taurine-induced HSC apoptosis and provide references for liver disorder therapy.展开更多
Smoking is the primary cause of lung cancer and is linked to 85% of lung cancer cases.However,how lung cancer develops in patients with smoking history remains unclear.Systems approaches that combine human protein-pro...Smoking is the primary cause of lung cancer and is linked to 85% of lung cancer cases.However,how lung cancer develops in patients with smoking history remains unclear.Systems approaches that combine human protein-protein interaction (PPI) networks and gene expression data are superior to traditional methods.We performed these systems to determine the role that smoking plays in lung cancer development and used the support vector machine (SVM) model to predict PPIs.By defining expression variance (EV),we found 520 dynamic proteins (EV>0.4) using data from the Human Protein Reference Database and Gene Expression Omnibus Database,and built 7 dynamic PPI subnetworks of lung cancer in patients with smoking history.We also determined the primary functions of each subnetwork:signal transduction,apoptosis,and cell migration and adhesion for subnetwork A;cell-sustained angiogenesis for subnetwork B;apoptosis for subnetwork C;and,finally,signal transduction and cell replication and proliferation for subnetworks D-G.The probability distribution of the degree of dynamic protein and static protein differed,clearly showing that the dynamic proteins were not the core proteins which widely connected with their neighbor proteins.There were high correlations among the dynamic proteins,suggesting that the dynamic proteins tend to form specific dynamic modules.We also found that the dynamic proteins were only correlated with the expression of selected proteins but not all neighbor proteins when cancer occurred.展开更多
To explore the molecular mechanism of Ind-igo Naturalis in intervening chronic myelocytic leukemia (CML) under the guidance of protein-protein interaction network, the molecular docking technique and in vitro c...To explore the molecular mechanism of Ind-igo Naturalis in intervening chronic myelocytic leukemia (CML) under the guidance of protein-protein interaction network, the molecular docking technique and in vitro cell experiment were chosen. CML-related genes were obtained from the online mendelian inheritance in man database (OMIM), then String 10. 0 was used for text mining and constructing the CML protein-protein interaction network. The interaction data were input in Cytoscape 3. 4. 0 software. Plug-in CentiScaPe 2. 1 was used for implement topology analysis. Small active substances of Indigo Naturalis were obtained from a third-party database, which were optimized by Chemoffice 8. 0 and Sybyl 8. 1, then small molecular ligand library was obtained. The molecular docking was carried out by Surflex-Dock module, the key target was received after scoring. Protein-protein interaction network of CML was constructed, which was consisted of 425 nodes ( proteins) and 2 799 sides ( interactions). The key gene J.AK2 was got. CML is a polygenic disease and JAK2 is likely to be a key node.展开更多
Duplication and divergence have been widely recognized as the two domi- nant evolutionary forces in shaping biological networks, e.g., gene regulatory networks and protein-protein interaction (PPI) networks. It has ...Duplication and divergence have been widely recognized as the two domi- nant evolutionary forces in shaping biological networks, e.g., gene regulatory networks and protein-protein interaction (PPI) networks. It has been shown that the network growth models constructed on the principle of duplication and divergence can recapture the topo- logical properties of real PPI networks. However, such network models only consider the evolution processes. How to select the model parameters with the real biological experi- mental data has not been presented. Therefore, based on the real PPI network statistical data, a yeast PPI network model is constructed. The simulation results indicate that the topological characteristics of the constructed network model are well consistent with those of real PPI networks, especially on sparseness, scale-free, small-world, hierarchical modularity, and disassortativity.展开更多
Searching the maximum bicliques or bipartite subgraphs in a graph is a tough question. We proposed a new and efficient method, Searching Quasi-Bicliques (SQB) algorithm, to detect maximum quasi-bicliques from protein-...Searching the maximum bicliques or bipartite subgraphs in a graph is a tough question. We proposed a new and efficient method, Searching Quasi-Bicliques (SQB) algorithm, to detect maximum quasi-bicliques from protein-protein interaction network. As a Divide-and-Conquer method, SQB consists of three steps: first, it divides the protein-protein interaction network into a number of Distance-2-Subgraphs;second, by combining top-down and branch-and-bound methods, SQB seeks quasi-bicliques from every Distance-2-Subgraph;third, all the redundant results are removed. We successfully applied our method on the Saccharomyces cerevisiae dataset and obtained 2754 distinct quasi-bicliques.展开更多
AIM:To understand the complex reaction of gastric inflammation induced by Helicobacter pylori(H pylori) in a systematic manner using a protein interaction network. METHODS:The expression of genes significantly changed...AIM:To understand the complex reaction of gastric inflammation induced by Helicobacter pylori(H pylori) in a systematic manner using a protein interaction network. METHODS:The expression of genes significantly changed on microarray during H pylori infection was scanned from the web literary database and translated into proteins.A network of protein interactions was constructed by searching the primary interactions of selected proteins.The constructed network was mathematically analyzed and its biological function was examined.In addition,the nodes on the network were checked to determine if they had any further functional importance or relation to other proteins by extending them. RESULTS:The scale-free network showing the relationship between inflammation and carcinogenesis was constructed.Mathematical analysis showed hub and bottleneck proteins,and these proteins were mostly related to immune response.The network contained pathways and proteins related to H pylori infection,such as the JAK-STAT pathway triggered by interleukins.Activation of nuclear factor (NF)-κB,TLR4,and other proteins known to function as core proteins of immune response were also found. These immune-related proteins interacted on the network with pathways and proteins related to the cell cycle,cell maintenance and proliferation,andtranscription regulators such as BRCA1,FOS,REL,and zinc finger proteins.The extension of nodes showed interactions of the immune proteins with cancer- related proteins.One extended network,the core network,a summarized form of the extended network, and cell pathway model were constructed. CONCLUSION:Immune-related proteins activated by H pylori infection interact with proto-oncogene proteins.The hub and bottleneck proteins are potential drug targets for gastric inflammation and cancer.展开更多
Essential proteins are inseparable in cell growth and survival. The study of essential proteins is important for understanding cellular functions and biological mechanisms. Therefore, various computable methods have b...Essential proteins are inseparable in cell growth and survival. The study of essential proteins is important for understanding cellular functions and biological mechanisms. Therefore, various computable methods have been proposed to identify essential proteins. Unfortunately, most methods based on network topology only consider the interactions between a protein and its neighboring proteins, and not the interactions with its higher-order distance proteins. In this paper, we propose the DSEP algorithm in which we integrated network topology properties and subcellular localization information in protein–protein interaction(PPI) networks based on four-order distances, and then used random walks to identify the essential proteins. We also propose a method to calculate the finite-order distance of the network, which can greatly reduce the time complexity of our algorithm. We conducted a comprehensive comparison of the DSEP algorithm with 11 existing classical algorithms to identify essential proteins with multiple evaluation methods. The results show that DSEP is superior to these 11 methods.展开更多
Plants are frequently affected by pathogen infections.To effectively defend against such infections,two major modes of innate immunity have evolved in plants;pathogen-associated molecular pattern-triggered immunity an...Plants are frequently affected by pathogen infections.To effectively defend against such infections,two major modes of innate immunity have evolved in plants;pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity.Although the molecular components as well as the corresponding pathways involved in these two processes have been identified,many aspects of the molecular mechanisms of the plant immune system remain elusive.Recently,the rapid development of omics techniques(e.g.,genomics,proteomics and transcriptomics) has provided a great opportunity to explore plant–pathogen interactions from a systems perspective and studies on protein–protein interactions(PPIs) between plants and pathogens have been carried out and characterized at the network level.In this review,we introduce experimental and computational identification methods of PPIs,popular PPI network analysis approaches,and existing bioinformatics resources/tools related to PPIs.Then,we focus on reviewing the progress in genome-wide PPI networks related to plant–pathogen interactions,including pathogen-centric PPI networks,plant-centric PPI networks and interspecies PPI networks between plants and pathogens.We anticipate genome-wide PPI network analysis will provide a clearer understanding of plant–pathogen interactions and will offer some new opportunities for crop protection and improvement.展开更多
Plant protein-protein interaction networks have not been identified by large-scale experiments. In order to better understand the protein interactions in rice, the Predicted Rice Interactome Network (PRIN; http://bi...Plant protein-protein interaction networks have not been identified by large-scale experiments. In order to better understand the protein interactions in rice, the Predicted Rice Interactome Network (PRIN; http://bis.zju.edu.cn/ prin/) presented 76,585 predicted interactions involving 5,049 rice proteins. After mapping genomic features of rice (GO annotation, subcellular localizationprediction, and gene expression), we found that a well-annotated and biologically significant network is rich enough to capture many significant functional linkages within higher-order biological systems, such as pathways and biological processes. Furthermore, we took MADS-box do- main-containing proteins and circadian rhythm signaling pathways as examples to demonstrate that functional protein complexes and biological pathways could be effectively expanded in our predicted network. The expanded molecular network in PRIN has considerably improved the capability of these analyses to integrate existing knowledge and provide novel insights into the function and coordination of genes and gene networks.展开更多
Proteins carry out their functions by interacting with other proteins and small molecules, forming a complex interaction network. In this review, we briefly introduce classical graph theory based protein-protein inter...Proteins carry out their functions by interacting with other proteins and small molecules, forming a complex interaction network. In this review, we briefly introduce classical graph theory based protein-protein interaction networks. We also describe the commonly used experimental methods to construct these networks, and the insights that can be gained from these networks. We then discuss the recent transition from graph theory based networks to structure based protein-protein interaction networks and the advantages of the latter over the former, using two networks as examples. We further discuss the usefulness of structure based protein-protein interaction networks for drug discovery, with a special emphasis on drug repositioning.展开更多
Leptospira interrogans serovar Lai is a pathogenic bacterium that causes a spirochetal zoonosis in humans and some animals. With its complete genome sequence available, it is possible to analyze protein-protein intera...Leptospira interrogans serovar Lai is a pathogenic bacterium that causes a spirochetal zoonosis in humans and some animals. With its complete genome sequence available, it is possible to analyze protein-protein interactions from a whole- genome standpoint. Here we combine four recently developed computational approaches (gene fusion method, gene neighbor method, phylogenetic profiles method, and operon method) to predict protein-pro- tein interaction networks of Leptospira interrogans strain Lai. Through comprehensive analysis on in- teractions among proteins of motility and chemotaxis system, signal transduction, lipopolysaccaride bio- synthesis and a series of proteins related to adhesion and invasion, we provided information for further studying on its pathogenic mechanism. In addition, we also assigned 203 previously uncharacterized proteins with possible functions based on the known functions of its interacting partners. This work is helpful for further investigating L. interrogans strain Lai.展开更多
通过构建牛热休克蛋白A6(heat shock protein A6,HSPA6)序列与其他生物的系统进化树,以及运用生物信息学方法分析牛HSPA6蛋白的基本理化性质、亲疏水性等,并结合蛋白互作网络,探究牛HSPA6基因编码蛋白的结构和功能特性。结果显示,牛HSPA...通过构建牛热休克蛋白A6(heat shock protein A6,HSPA6)序列与其他生物的系统进化树,以及运用生物信息学方法分析牛HSPA6蛋白的基本理化性质、亲疏水性等,并结合蛋白互作网络,探究牛HSPA6基因编码蛋白的结构和功能特性。结果显示,牛HSPA6蛋白与羊、长江江豚等哺乳动物的氨基酸序列相似性较高;牛HSPA6蛋白分子质量为70 570.64 u,理论等电点为5.66,为酸性亲水性蛋白,无跨膜结构和信号肽;可能存在11个得分>0.900的磷酸化位点,与N-糖基化激活位点可能位于后端碱基;牛HSPA6蛋白是一种主要由40.38%的α-螺旋和33.65%的无规卷曲组成的二级结构相对稳定的蛋白质,包含N-端核苷酸结合域和C-端多肽结合域两个主要的结构域,主要在细胞质中发挥作用;蛋白质互作网络构建结果显示,牛HSPA6蛋白主要与BAG1、DNAJA4、DNAJB1、DNAJC2等蛋白发生互作,参与腺苷酸交换因子活性、ATP酶调节活性、伴侣绑定等,表明牛HSPA6蛋白在牛机体能量代谢等过程中发挥潜在生物学功能。这些多重生物信息学分析为深入探讨牛HSPA6蛋白对肉品质的影响机制提供了理论依据。展开更多
文摘Background:To develop a protein-protein interaction network of Paroxysmal nocturnal hemoglobinuria(PNH)and Aplastic anemia(AA)based on genetic genes and to predict pathways underlying the molecular complexes in the network.Methods:In this research,the PNH and AA-related genes were screened through Online Mendelian Inheritance in Man(OMIM).The plugins and Cytoscape were used to search literature and build a protein-protein interaction network.Results:The protein-protein interaction network contains two molecular complexes that are five higher than the correlation integral values.The target genes of this study were obtained:CD59,STAT3,TERC,TNF,AKT1,C5AR1,EPO,IL6,IL10 and so on.We also found that many factors regulate biological behaviors:neutrophils,macrophages,vascular endothelial growth factor,immunoglobulin,interleukin,cytokine receptor,interleukin-6 receptor,tumor necrosis factor,and so on.This research provides a bioinformatics foundation for further explaining the mechanism of common development of both.Conclusion:This indicates that the PNH and AA is a complex process regulated by many cellular pathways and multiple genes.
基金the National Natural Science Foundation of China,No.81360595 and No.81860790Guangxi Natural Science Foundation Program,No.KJT13066+2 种基金the Bagui Scholars Foundation Program of Guangxithe Special-term Experts Foundation Program of Guangxithe Project of Guangxi Young Teacher Fundamental Ability Promotion,No.2017KY0298
文摘BACKGROUND Studies show that the antifibrotic mechanism of taurine may involve its inhibition of the activation and proliferation of hepatic stellate cells(HSCs). Since the molecular mechanism of taurine-mediated antifibrotic activity has not been fully unveiled and is little studied, it is imperative to use "omics" methods to systematically investigate the molecular mechanism by which taurine inhibits liver fibrosis.AIM To establish a network including transcriptomic and protein-protein interaction data to elucidate the molecular mechanism of taurine-induced HSC apoptosis.METHODS We used microarrays, bioinformatics, protein-protein interaction(PPI) network,and sub-modules to investigate taurine-induced changes in gene expression in human HSCs(LX-2). Subsequently, all of the differentially expressed genes(DEGs) were subjected to gene ontology function and Kyoto encyclopedia of genes and genomes pathway enrichment analysis. Furthermore, the interactions of DEGs were explored in a human PPI network, and sub-modules of the DEGs interaction network were analyzed using Cytoscape software.RESULTS A total of 635 DEGs were identified in taurine-treated HSCs when compared with the controls. Of these, 304 genes were statistically significantly up-regulated, and 331 down-regulated. Most of these DEGs were mainly located on the membrane and extracellular region, and are involved in the biological processes of signal transduction, cell proliferation, positive regulation of extracellular regulated protein kinases 1(ERK1) and ERK2 cascade, extrinsic apoptotic signaling pathway and so on. Fifteen significantly enriched pathways with DEGs were identified, including mitogen-activated protein kinase(MAPK) signaling pathway, peroxisome proliferators-activated receptor signaling pathway,estrogen signaling pathway, Th1 and Th2 cell differentiation, cyclic adenosine monophosphate signaling pathway and so on. By integrating the transcriptomics and human PPI data, nine critical genes, including MMP2, MMP9, MMP21,TIMP3, KLF10, CX3CR1, TGFB1, VEGFB, and EGF, were identified in the PPI network analysis.CONCLUSION Taurine promotes the apoptosis of HSCs via up-regulating TGFB1 and then activating the p38 MAPK-JNK-Caspase9/8/3 pathway. These findings enhance the understanding of the molecular mechanism of taurine-induced HSC apoptosis and provide references for liver disorder therapy.
基金supported by grants from the National Natural Science Foundation of China (No. 91130009)Science and Technology Planning Project of Guangdong Province of China (No. 2003A3080503)
文摘Smoking is the primary cause of lung cancer and is linked to 85% of lung cancer cases.However,how lung cancer develops in patients with smoking history remains unclear.Systems approaches that combine human protein-protein interaction (PPI) networks and gene expression data are superior to traditional methods.We performed these systems to determine the role that smoking plays in lung cancer development and used the support vector machine (SVM) model to predict PPIs.By defining expression variance (EV),we found 520 dynamic proteins (EV>0.4) using data from the Human Protein Reference Database and Gene Expression Omnibus Database,and built 7 dynamic PPI subnetworks of lung cancer in patients with smoking history.We also determined the primary functions of each subnetwork:signal transduction,apoptosis,and cell migration and adhesion for subnetwork A;cell-sustained angiogenesis for subnetwork B;apoptosis for subnetwork C;and,finally,signal transduction and cell replication and proliferation for subnetworks D-G.The probability distribution of the degree of dynamic protein and static protein differed,clearly showing that the dynamic proteins were not the core proteins which widely connected with their neighbor proteins.There were high correlations among the dynamic proteins,suggesting that the dynamic proteins tend to form specific dynamic modules.We also found that the dynamic proteins were only correlated with the expression of selected proteins but not all neighbor proteins when cancer occurred.
文摘To explore the molecular mechanism of Ind-igo Naturalis in intervening chronic myelocytic leukemia (CML) under the guidance of protein-protein interaction network, the molecular docking technique and in vitro cell experiment were chosen. CML-related genes were obtained from the online mendelian inheritance in man database (OMIM), then String 10. 0 was used for text mining and constructing the CML protein-protein interaction network. The interaction data were input in Cytoscape 3. 4. 0 software. Plug-in CentiScaPe 2. 1 was used for implement topology analysis. Small active substances of Indigo Naturalis were obtained from a third-party database, which were optimized by Chemoffice 8. 0 and Sybyl 8. 1, then small molecular ligand library was obtained. The molecular docking was carried out by Surflex-Dock module, the key target was received after scoring. Protein-protein interaction network of CML was constructed, which was consisted of 425 nodes ( proteins) and 2 799 sides ( interactions). The key gene J.AK2 was got. CML is a polygenic disease and JAK2 is likely to be a key node.
基金Project supported by the National Natural Science Foundation of China(No.11172158)
文摘Duplication and divergence have been widely recognized as the two domi- nant evolutionary forces in shaping biological networks, e.g., gene regulatory networks and protein-protein interaction (PPI) networks. It has been shown that the network growth models constructed on the principle of duplication and divergence can recapture the topo- logical properties of real PPI networks. However, such network models only consider the evolution processes. How to select the model parameters with the real biological experi- mental data has not been presented. Therefore, based on the real PPI network statistical data, a yeast PPI network model is constructed. The simulation results indicate that the topological characteristics of the constructed network model are well consistent with those of real PPI networks, especially on sparseness, scale-free, small-world, hierarchical modularity, and disassortativity.
文摘Searching the maximum bicliques or bipartite subgraphs in a graph is a tough question. We proposed a new and efficient method, Searching Quasi-Bicliques (SQB) algorithm, to detect maximum quasi-bicliques from protein-protein interaction network. As a Divide-and-Conquer method, SQB consists of three steps: first, it divides the protein-protein interaction network into a number of Distance-2-Subgraphs;second, by combining top-down and branch-and-bound methods, SQB seeks quasi-bicliques from every Distance-2-Subgraph;third, all the redundant results are removed. We successfully applied our method on the Saccharomyces cerevisiae dataset and obtained 2754 distinct quasi-bicliques.
文摘AIM:To understand the complex reaction of gastric inflammation induced by Helicobacter pylori(H pylori) in a systematic manner using a protein interaction network. METHODS:The expression of genes significantly changed on microarray during H pylori infection was scanned from the web literary database and translated into proteins.A network of protein interactions was constructed by searching the primary interactions of selected proteins.The constructed network was mathematically analyzed and its biological function was examined.In addition,the nodes on the network were checked to determine if they had any further functional importance or relation to other proteins by extending them. RESULTS:The scale-free network showing the relationship between inflammation and carcinogenesis was constructed.Mathematical analysis showed hub and bottleneck proteins,and these proteins were mostly related to immune response.The network contained pathways and proteins related to H pylori infection,such as the JAK-STAT pathway triggered by interleukins.Activation of nuclear factor (NF)-κB,TLR4,and other proteins known to function as core proteins of immune response were also found. These immune-related proteins interacted on the network with pathways and proteins related to the cell cycle,cell maintenance and proliferation,andtranscription regulators such as BRCA1,FOS,REL,and zinc finger proteins.The extension of nodes showed interactions of the immune proteins with cancer- related proteins.One extended network,the core network,a summarized form of the extended network, and cell pathway model were constructed. CONCLUSION:Immune-related proteins activated by H pylori infection interact with proto-oncogene proteins.The hub and bottleneck proteins are potential drug targets for gastric inflammation and cancer.
基金Project supported by the Gansu Province Industrial Support Plan (Grant No.2023CYZC-25)the Natural Science Foundation of Gansu Province (Grant No.23JRRA770)the National Natural Science Foundation of China (Grant No.62162040)。
文摘Essential proteins are inseparable in cell growth and survival. The study of essential proteins is important for understanding cellular functions and biological mechanisms. Therefore, various computable methods have been proposed to identify essential proteins. Unfortunately, most methods based on network topology only consider the interactions between a protein and its neighboring proteins, and not the interactions with its higher-order distance proteins. In this paper, we propose the DSEP algorithm in which we integrated network topology properties and subcellular localization information in protein–protein interaction(PPI) networks based on four-order distances, and then used random walks to identify the essential proteins. We also propose a method to calculate the finite-order distance of the network, which can greatly reduce the time complexity of our algorithm. We conducted a comprehensive comparison of the DSEP algorithm with 11 existing classical algorithms to identify essential proteins with multiple evaluation methods. The results show that DSEP is superior to these 11 methods.
基金supported by grants from the National Natural Science Foundation of China(31271414,31471249)
文摘Plants are frequently affected by pathogen infections.To effectively defend against such infections,two major modes of innate immunity have evolved in plants;pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity.Although the molecular components as well as the corresponding pathways involved in these two processes have been identified,many aspects of the molecular mechanisms of the plant immune system remain elusive.Recently,the rapid development of omics techniques(e.g.,genomics,proteomics and transcriptomics) has provided a great opportunity to explore plant–pathogen interactions from a systems perspective and studies on protein–protein interactions(PPIs) between plants and pathogens have been carried out and characterized at the network level.In this review,we introduce experimental and computational identification methods of PPIs,popular PPI network analysis approaches,and existing bioinformatics resources/tools related to PPIs.Then,we focus on reviewing the progress in genome-wide PPI networks related to plant–pathogen interactions,including pathogen-centric PPI networks,plant-centric PPI networks and interspecies PPI networks between plants and pathogens.We anticipate genome-wide PPI network analysis will provide a clearer understanding of plant–pathogen interactions and will offer some new opportunities for crop protection and improvement.
基金supported by the National Natural Science Foundation of China(Grant No.30771326,30971743,31050110121)the National Science and Technology Project of China(Grant No.2008AA10Z125,2008ZX08003-005,2009DFA32030)the Program for New Century Excellent Talents in University of China(Grant No.NCET-07-0740)
文摘Plant protein-protein interaction networks have not been identified by large-scale experiments. In order to better understand the protein interactions in rice, the Predicted Rice Interactome Network (PRIN; http://bis.zju.edu.cn/ prin/) presented 76,585 predicted interactions involving 5,049 rice proteins. After mapping genomic features of rice (GO annotation, subcellular localizationprediction, and gene expression), we found that a well-annotated and biologically significant network is rich enough to capture many significant functional linkages within higher-order biological systems, such as pathways and biological processes. Furthermore, we took MADS-box do- main-containing proteins and circadian rhythm signaling pathways as examples to demonstrate that functional protein complexes and biological pathways could be effectively expanded in our predicted network. The expanded molecular network in PRIN has considerably improved the capability of these analyses to integrate existing knowledge and provide novel insights into the function and coordination of genes and gene networks.
基金This work was funded by grants from the National Natural Science Foundation of China (NSFC) (Grant No. 31210103916 and 91019019), Chinese Ministry of Science and Technology (Grant No. 2011CB504206) and Chinese Academy of Sciences (CAS) (Grant Nos. KSCX2-EW-R-02 and KSCX2-EW-J-15) and stem cell leading project XDA01010303 to J.D.J.H.H.N. was supported by the Chinese Academy of Sciences Fellow- ship for Young International Scientist [Grant No. 2012Y1SB0006] and the National Natural Science Foundation of China [Grant No. 31250110524]. The authors thank Dr. Jerome Boyd-Kirkup for extensive editing and Hamna Anwar for proofreading the manu- script.
文摘Proteins carry out their functions by interacting with other proteins and small molecules, forming a complex interaction network. In this review, we briefly introduce classical graph theory based protein-protein interaction networks. We also describe the commonly used experimental methods to construct these networks, and the insights that can be gained from these networks. We then discuss the recent transition from graph theory based networks to structure based protein-protein interaction networks and the advantages of the latter over the former, using two networks as examples. We further discuss the usefulness of structure based protein-protein interaction networks for drug discovery, with a special emphasis on drug repositioning.
文摘Leptospira interrogans serovar Lai is a pathogenic bacterium that causes a spirochetal zoonosis in humans and some animals. With its complete genome sequence available, it is possible to analyze protein-protein interactions from a whole- genome standpoint. Here we combine four recently developed computational approaches (gene fusion method, gene neighbor method, phylogenetic profiles method, and operon method) to predict protein-pro- tein interaction networks of Leptospira interrogans strain Lai. Through comprehensive analysis on in- teractions among proteins of motility and chemotaxis system, signal transduction, lipopolysaccaride bio- synthesis and a series of proteins related to adhesion and invasion, we provided information for further studying on its pathogenic mechanism. In addition, we also assigned 203 previously uncharacterized proteins with possible functions based on the known functions of its interacting partners. This work is helpful for further investigating L. interrogans strain Lai.