A new method was described for using a recurrent neural network with bias units to predict contact maps in proteins. The main inputs to the neural network include residues pairwise, residue classification according to...A new method was described for using a recurrent neural network with bias units to predict contact maps in proteins. The main inputs to the neural network include residues pairwise, residue classification according to hydrophobicity, polar, acidic, basic and secondary structure information and residue separation between two residues. In our work, a dataset was used which was composed of 53 globulin proteins of known 3D structure. An average predictive accuracy of 0.29 was obtained. Our results demonstrate the viability of the approach for predicting contact maps.展开更多
蛋白质是由多个氨基酸组成的长链,是生物体的必要组成成分,参与了生命活动的每一个进程。蛋白质结构决定了许多蛋白质的功能,准确预测蛋白质中氨基酸残基接触对于蛋白质结构预测具有重要意义,蛋白质残基接触问题已经成为当前生物信息领...蛋白质是由多个氨基酸组成的长链,是生物体的必要组成成分,参与了生命活动的每一个进程。蛋白质结构决定了许多蛋白质的功能,准确预测蛋白质中氨基酸残基接触对于蛋白质结构预测具有重要意义,蛋白质残基接触问题已经成为当前生物信息领域的热点问题。该文首先给出了蛋白质残基接触图预测的相关背景知识及其重要意义;其次,总结了当前国内外研究的主流方法,包括基于局部相关性的方法、直接耦合分析法与其后处理的方法、以及基于有监督机器学习的方法,并对其中的代表性方法进行了阐述;结合国际蛋白质结构预测竞赛(Critical assessment of protein structure prediction,CASP)的结果对现有模型的性能做了对比和分析;在此基础上,探讨了残基接触图预测在蛋白质结构功能建模中的应用;最后,针对蛋白质接触图预测中存在的若干难点问题,给出了有望取得突破的若干研究方向。展开更多
蛋白质的三维结构是研究其生物功能及活性机理的基础.为了提高蛋白质结构的预测精度,在进化计算的框架下,提出一种接触图辅助的过程重采样蛋白质构象空间优化算法(Contact Map-assistedProcess Resampling Protein Conformation Space O...蛋白质的三维结构是研究其生物功能及活性机理的基础.为了提高蛋白质结构的预测精度,在进化计算的框架下,提出一种接触图辅助的过程重采样蛋白质构象空间优化算法(Contact Map-assistedProcess Resampling Protein Conformation Space Optimization Algorithm,CM PR). CM PR算法基于残基接触图设计打分模型,用于选择构象以构建过程片段库,使用基于过程重采样策略的片段组装技术执行变异操作,残基接触先验知识和种群进化过程统计知识辅助采样,可以增强近天然态构象区域的搜索能力,提高蛋白质结构预测精度.在12个测试蛋白上的实验结果表明,所提方法具有良好的近天然态构象采样能力和较高的预测精度.展开更多
文摘A new method was described for using a recurrent neural network with bias units to predict contact maps in proteins. The main inputs to the neural network include residues pairwise, residue classification according to hydrophobicity, polar, acidic, basic and secondary structure information and residue separation between two residues. In our work, a dataset was used which was composed of 53 globulin proteins of known 3D structure. An average predictive accuracy of 0.29 was obtained. Our results demonstrate the viability of the approach for predicting contact maps.
文摘蛋白质是由多个氨基酸组成的长链,是生物体的必要组成成分,参与了生命活动的每一个进程。蛋白质结构决定了许多蛋白质的功能,准确预测蛋白质中氨基酸残基接触对于蛋白质结构预测具有重要意义,蛋白质残基接触问题已经成为当前生物信息领域的热点问题。该文首先给出了蛋白质残基接触图预测的相关背景知识及其重要意义;其次,总结了当前国内外研究的主流方法,包括基于局部相关性的方法、直接耦合分析法与其后处理的方法、以及基于有监督机器学习的方法,并对其中的代表性方法进行了阐述;结合国际蛋白质结构预测竞赛(Critical assessment of protein structure prediction,CASP)的结果对现有模型的性能做了对比和分析;在此基础上,探讨了残基接触图预测在蛋白质结构功能建模中的应用;最后,针对蛋白质接触图预测中存在的若干难点问题,给出了有望取得突破的若干研究方向。
文摘蛋白质的三维结构是研究其生物功能及活性机理的基础.为了提高蛋白质结构的预测精度,在进化计算的框架下,提出一种接触图辅助的过程重采样蛋白质构象空间优化算法(Contact Map-assistedProcess Resampling Protein Conformation Space Optimization Algorithm,CM PR). CM PR算法基于残基接触图设计打分模型,用于选择构象以构建过程片段库,使用基于过程重采样策略的片段组装技术执行变异操作,残基接触先验知识和种群进化过程统计知识辅助采样,可以增强近天然态构象区域的搜索能力,提高蛋白质结构预测精度.在12个测试蛋白上的实验结果表明,所提方法具有良好的近天然态构象采样能力和较高的预测精度.