Helicobacter pylori (H. pylori) neutrophil-activating protein (HP-NAP) was originally identified as a virulence factor of H. pylori for its ability to activate neutrophils to generate respiratory burst by releasing re...Helicobacter pylori (H. pylori) neutrophil-activating protein (HP-NAP) was originally identified as a virulence factor of H. pylori for its ability to activate neutrophils to generate respiratory burst by releasing reactive oxygen species. Later on, HP-NAP was also found to be involved in the protection of H. pylori from DNA damage, supporting the survival of H. pylori under oxidative stress. This protein is highly conserved and expressed by virtually all clinical isolates of H. pylori. The majority of patients infected with H. pylori produced antibodies specific for HP-NAP, suggesting its important role in immunity. In addition to acting as a pathogenic factor by activating the innate immunity through a wide range of human leukocytes, including neutrophils, monocytes, and mast cells, HP-NAP also mediates adaptive immunity through the induction of T helper cell type I responses. The pro-inflammatory and immunomodulatory properties of HP-NAP not only make it play an important role in disease pathogenesis but also make it a potential candidate for clinical use. Even though there is no convincing evidence to link HP-NAP to a disease outcome, recent findings supporting the pathogenic role of HP-NAP will be reviewed. In addition, the potential clinical applications of HP-NAP in vaccine development, clinical diagnosis, and drug development will be discussed.展开更多
After decades of development,protein and peptide drugs have now grown into a major drug class in the marketplace.Target identification and validation are crucial for the discovery of protein and peptide drugs,and bioi...After decades of development,protein and peptide drugs have now grown into a major drug class in the marketplace.Target identification and validation are crucial for the discovery of protein and peptide drugs,and bioinformatics prediction of targets based on the characteristics of known target proteins will help improve the efficiency and success rate of target selection.However,owing to the developmental history in the pharmaceutical industry,previous systematic exploration of the target spaces has mainly focused on traditional small-molecule drugs,while studies related to protein and peptide drugs are lacking.Here,we systematically explore the target spaces in the human genome specifically for protein and peptide drugs.Compared with other proteins,both successful protein and peptide drug targets have many special characteristics,and are also significantly different from those of small-molecule drugs in many aspects.Based on these features,we develop separate effective genome-wide target prediction models for protein and peptide drugs.Finally,a user-friendly web server,Predictor Of Protein and Pept Ide drugs’therapeutic Targets(POPPIT)(http://poppit.ncpsb.org.cn/),is established,which provides not only target prediction specifically for protein and peptide drugs but also abundant annotations for predicted targets.展开更多
The outbreak and spread of coronavirus disease 2019(COVID-19)highlighted the importance and urgency of the research and development of therapeutic drugs.Very early into the COVID-19 pandemic,China has begun developing...The outbreak and spread of coronavirus disease 2019(COVID-19)highlighted the importance and urgency of the research and development of therapeutic drugs.Very early into the COVID-19 pandemic,China has begun developing drugs,with some notable progress.Herein,we summarizes the anti-COVID-19 drugs and promising drug candidates originally developed and researched in China.Furthermore,we discussed the developmental prospects,mechanisms of action,and advantages and disadvantages of the anti-COVID-19 drugs in development,with the aim to contribute to the rational use of drugs in COVID-19 treatment and more effective development of new drugs against severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and the variants.Neutralizing antibody is an effective approach to overcome COVID-19.However,drug resistance induced by rapid virus mutation will likely to challenge neutralizing antibodies.Taking into account current epidemic trends,small molecule drugs have a crucial role in fighting COVID-19 due to their significant advantage of convenient administration and affordable and broad-spectrum.Traditional Chinese medicines,including natural products and traditional Chinese medicine prescriptions,contribute to the treatment of COVID-19 due to their unique mechanism of action.Currently,the research and development of Chinese anti-COVID-19 drugs have led to some promising achievements,thus prompting us to expect even more rapidly available solutions.展开更多
As a multifunctional fluorescent nanomaterial, carbon dots (CDs) not only have small size, stable chemical properties, excellent photoluminescence characteristics, but also exhibit good biocompatibility and low toxici...As a multifunctional fluorescent nanomaterial, carbon dots (CDs) not only have small size, stable chemical properties, excellent photoluminescence characteristics, but also exhibit good biocompatibility and low toxicity. It has attracted considerable attention in the field of nanotechnology and biological science. CDs contain abundant functional groups on the surface, which not only retain part of the properties of raw materials, but also may have new photoelectric, catalytic, biomedical, and other functions. In this review, we systematically summarize the synthesis methods, modifications, optical properties, and main biological functions of CDs in recent years. The application of functionalized modified CDs in biological detection, biological imaging, photodynamic therapy, photothermal therapy, targeted therapy, drug delivery, gene delivery, protein delivery, and other biomedical fields is introduced. The latest progress of CDs with its own biomedical function in antioxidant, anti-pathogen, and disease treatment is summarized. Finally, we discuss some problems in the practical application of CDs and look forward to the future development trend of self-functional CDs combined with surface modification to achieve multimodal treatment of diseases.展开更多
基金Supported by National Science Council of Taiwan,No.NSC101-2311-B-007-007
文摘Helicobacter pylori (H. pylori) neutrophil-activating protein (HP-NAP) was originally identified as a virulence factor of H. pylori for its ability to activate neutrophils to generate respiratory burst by releasing reactive oxygen species. Later on, HP-NAP was also found to be involved in the protection of H. pylori from DNA damage, supporting the survival of H. pylori under oxidative stress. This protein is highly conserved and expressed by virtually all clinical isolates of H. pylori. The majority of patients infected with H. pylori produced antibodies specific for HP-NAP, suggesting its important role in immunity. In addition to acting as a pathogenic factor by activating the innate immunity through a wide range of human leukocytes, including neutrophils, monocytes, and mast cells, HP-NAP also mediates adaptive immunity through the induction of T helper cell type I responses. The pro-inflammatory and immunomodulatory properties of HP-NAP not only make it play an important role in disease pathogenesis but also make it a potential candidate for clinical use. Even though there is no convincing evidence to link HP-NAP to a disease outcome, recent findings supporting the pathogenic role of HP-NAP will be reviewed. In addition, the potential clinical applications of HP-NAP in vaccine development, clinical diagnosis, and drug development will be discussed.
基金supported by the National Key R&D Program of China(Grant Nos.2020YFE0202200 and 2017YFC1700105)the National Natural Science Foundation of China(Grant Nos.31601064,31871341,and 32088101)+1 种基金the Beijing Nova Program of China(Grant No.Z171100001117117)the State Key Laboratory of Proteomics of China(Grant No.SKLPO202010)。
文摘After decades of development,protein and peptide drugs have now grown into a major drug class in the marketplace.Target identification and validation are crucial for the discovery of protein and peptide drugs,and bioinformatics prediction of targets based on the characteristics of known target proteins will help improve the efficiency and success rate of target selection.However,owing to the developmental history in the pharmaceutical industry,previous systematic exploration of the target spaces has mainly focused on traditional small-molecule drugs,while studies related to protein and peptide drugs are lacking.Here,we systematically explore the target spaces in the human genome specifically for protein and peptide drugs.Compared with other proteins,both successful protein and peptide drug targets have many special characteristics,and are also significantly different from those of small-molecule drugs in many aspects.Based on these features,we develop separate effective genome-wide target prediction models for protein and peptide drugs.Finally,a user-friendly web server,Predictor Of Protein and Pept Ide drugs’therapeutic Targets(POPPIT)(http://poppit.ncpsb.org.cn/),is established,which provides not only target prediction specifically for protein and peptide drugs but also abundant annotations for predicted targets.
基金This study was supported by National Natural Science Foundation of China(NSFC,Grant No.81803614).
文摘The outbreak and spread of coronavirus disease 2019(COVID-19)highlighted the importance and urgency of the research and development of therapeutic drugs.Very early into the COVID-19 pandemic,China has begun developing drugs,with some notable progress.Herein,we summarizes the anti-COVID-19 drugs and promising drug candidates originally developed and researched in China.Furthermore,we discussed the developmental prospects,mechanisms of action,and advantages and disadvantages of the anti-COVID-19 drugs in development,with the aim to contribute to the rational use of drugs in COVID-19 treatment and more effective development of new drugs against severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and the variants.Neutralizing antibody is an effective approach to overcome COVID-19.However,drug resistance induced by rapid virus mutation will likely to challenge neutralizing antibodies.Taking into account current epidemic trends,small molecule drugs have a crucial role in fighting COVID-19 due to their significant advantage of convenient administration and affordable and broad-spectrum.Traditional Chinese medicines,including natural products and traditional Chinese medicine prescriptions,contribute to the treatment of COVID-19 due to their unique mechanism of action.Currently,the research and development of Chinese anti-COVID-19 drugs have led to some promising achievements,thus prompting us to expect even more rapidly available solutions.
基金Innovation Team Program of Guangdong Province,Grant/Award Number:2020KCXTD038Key Technologies Research and Development Program,Grant/Award Number:2019YFA0705202+1 种基金National Natural Science Foundation of China,Grant/Award Numbers:12032007,31701296,62274027,81941001Chongqing Natural Science Foundation,Grant/Award Number:cstc2019jcyjzdxmX0028。
文摘As a multifunctional fluorescent nanomaterial, carbon dots (CDs) not only have small size, stable chemical properties, excellent photoluminescence characteristics, but also exhibit good biocompatibility and low toxicity. It has attracted considerable attention in the field of nanotechnology and biological science. CDs contain abundant functional groups on the surface, which not only retain part of the properties of raw materials, but also may have new photoelectric, catalytic, biomedical, and other functions. In this review, we systematically summarize the synthesis methods, modifications, optical properties, and main biological functions of CDs in recent years. The application of functionalized modified CDs in biological detection, biological imaging, photodynamic therapy, photothermal therapy, targeted therapy, drug delivery, gene delivery, protein delivery, and other biomedical fields is introduced. The latest progress of CDs with its own biomedical function in antioxidant, anti-pathogen, and disease treatment is summarized. Finally, we discuss some problems in the practical application of CDs and look forward to the future development trend of self-functional CDs combined with surface modification to achieve multimodal treatment of diseases.