We present a preliminary report on the use of plant dyes in the quantitation of proteins in solution. We have used ethanol, acid, alkali and water to extract dyes from some plant materials, including flowers of Jungle...We present a preliminary report on the use of plant dyes in the quantitation of proteins in solution. We have used ethanol, acid, alkali and water to extract dyes from some plant materials, including flowers of Jungle flame (Izora coccinea), China rose (Hibiscus rosa-sinensis) and leaves of West African Indigo (Lonchocarpus cyanescens), Mimosa (Mimosa pudica), Roselle (Hibiscus sabdarifa), Jatropha (Jatropha curcas) and Henna (Lawsonia inermis). The dyes obtained were used in the protein-dye binding studies. The colour of the protein-dye complex of the ethanolic extracts was stable and increased linearly with increase in protein concentration. The extracts achieved linearity up to the following amount of proteins in the test samples: Hibiscus rosa-sinensis (60 mg), Ixora coccinea (120 mg), Hibiscus sabdarifa (80 - 100 mg), Jatropha curcas (80 mg), and Lawsonia inermis (100 mg). The sensitivity of the dyes especially at low protein concentrations indicate that they can provide suitable alternatives to other well known standard methods of protein determination.展开更多
Lead contamination still remains as serious threat to public health and environment because of its non-biodegradability and toxicity. A clean technique has been developed for removal of lead contamination through the ...Lead contamination still remains as serious threat to public health and environment because of its non-biodegradability and toxicity. A clean technique has been developed for removal of lead contamination through the formation of lead-oxide nanoplates using a bacterial protein (Molecular weight ~30 kDa) as biological template. The isolated hot-spring bacterial (the bacterium was named as MDH1) protein when adding to the solution of lead compound (e.g., lead nitrate), nanoplates of lead-oxide are formed as viewed by electron microscope. The as prepared lead-oxide-nanoplates are characterized by Inductively Coupled Plasma analysis, Energy Dispersive X-ray Spectroscopy and X-ray diffraction analyses. The lead-oxide-nanoplates and the filtered supernatant of the reactive solution both were separately used to observe the inhibition of growth of <i>E. coli</i> bacteria on culture plate. Lead-oxide-nanoplates produced clear zone of inhibition on the bacterial growth plate, whereas the filtered supernatant exhibited no such zone on the growth of <i>E. coli</i> bacteria revealing the fact that lead contamination was removed from the filtered supernatant. The prepared lead oxide nanoplates also possess dye degradation activity which is the added advantage of the process. The MDH1 bacterial protein acts as biological template which successfully removes lead contamination from lead-solution. The process is a clean and cost-effective one which can be used not only for removal of lead contamination but also for removal of different dyes from environment due to having dye-degradation attribute of the lead-oxide nanoplates.展开更多
Thermodynamic properties of complexes of Con ?go Red (CR) dye with amyloid ? (A?) peptides were studied by both absorption spectroscopy and isothermal titration calorimetry (ITC). Based on the absorption spectrum for ...Thermodynamic properties of complexes of Con ?go Red (CR) dye with amyloid ? (A?) peptides were studied by both absorption spectroscopy and isothermal titration calorimetry (ITC). Based on the absorption spectrum for the formation of CRAβ complexes in phosphate buffered saline solution (pH 7.4), van’t Hoff plots over a temperature range of 10oC to 70oC were created for CRAβ140, Aβ1228, and Aβ142. The plot for CR Aβ1228 complex showed a relatively linear feature within the given temperature range with ?H = –10.1 ?0.6 kJ/mol and ?S = + 0.128 ? 0.002 kJ/(mol K). However, the plot for CRAβ140 and CRAβ142 complexes exhibited two distinct linear regions with opposite slopes centered at a specific temperature, Ts, which was 54.7 ? 0.2℃ and 34.8 ? 0.2℃, respectively. The ITC experiments conducted at 25℃in water exhibited quite a different situation from the above mentioned spectroscopic approach. The ITC studies yielded a ?H of –85.3 ? 0.2 kJ/mol for the CRAβ1228 complex with negative entropy change –0.152 kJ/mol K). For CRAβ140, the ITC studies indicated the presence of two binding sites with ?H1 = –81.8 ? 0.3 kJ/mol and ?H2 = –119.5 ? 0.2 kJ/mol with K1 = 5.5 ? 0.7 ? 106 M1 and K2 = 6.9 ? 2.4 ? 108 M1, respectively. These binding constants are consistent with the model suggested by several studies. Both binding sites showed negative entropy changes suggesting that the formation of the complex is enthalpically driven. The disagreement in thermochemical values between two different methods confirmed that the enthalpy and entropy are heavily dependent on temperature and buffer/salt environment, and may involve inherently different reaction paths.展开更多
文摘We present a preliminary report on the use of plant dyes in the quantitation of proteins in solution. We have used ethanol, acid, alkali and water to extract dyes from some plant materials, including flowers of Jungle flame (Izora coccinea), China rose (Hibiscus rosa-sinensis) and leaves of West African Indigo (Lonchocarpus cyanescens), Mimosa (Mimosa pudica), Roselle (Hibiscus sabdarifa), Jatropha (Jatropha curcas) and Henna (Lawsonia inermis). The dyes obtained were used in the protein-dye binding studies. The colour of the protein-dye complex of the ethanolic extracts was stable and increased linearly with increase in protein concentration. The extracts achieved linearity up to the following amount of proteins in the test samples: Hibiscus rosa-sinensis (60 mg), Ixora coccinea (120 mg), Hibiscus sabdarifa (80 - 100 mg), Jatropha curcas (80 mg), and Lawsonia inermis (100 mg). The sensitivity of the dyes especially at low protein concentrations indicate that they can provide suitable alternatives to other well known standard methods of protein determination.
文摘Lead contamination still remains as serious threat to public health and environment because of its non-biodegradability and toxicity. A clean technique has been developed for removal of lead contamination through the formation of lead-oxide nanoplates using a bacterial protein (Molecular weight ~30 kDa) as biological template. The isolated hot-spring bacterial (the bacterium was named as MDH1) protein when adding to the solution of lead compound (e.g., lead nitrate), nanoplates of lead-oxide are formed as viewed by electron microscope. The as prepared lead-oxide-nanoplates are characterized by Inductively Coupled Plasma analysis, Energy Dispersive X-ray Spectroscopy and X-ray diffraction analyses. The lead-oxide-nanoplates and the filtered supernatant of the reactive solution both were separately used to observe the inhibition of growth of <i>E. coli</i> bacteria on culture plate. Lead-oxide-nanoplates produced clear zone of inhibition on the bacterial growth plate, whereas the filtered supernatant exhibited no such zone on the growth of <i>E. coli</i> bacteria revealing the fact that lead contamination was removed from the filtered supernatant. The prepared lead oxide nanoplates also possess dye degradation activity which is the added advantage of the process. The MDH1 bacterial protein acts as biological template which successfully removes lead contamination from lead-solution. The process is a clean and cost-effective one which can be used not only for removal of lead contamination but also for removal of different dyes from environment due to having dye-degradation attribute of the lead-oxide nanoplates.
文摘Thermodynamic properties of complexes of Con ?go Red (CR) dye with amyloid ? (A?) peptides were studied by both absorption spectroscopy and isothermal titration calorimetry (ITC). Based on the absorption spectrum for the formation of CRAβ complexes in phosphate buffered saline solution (pH 7.4), van’t Hoff plots over a temperature range of 10oC to 70oC were created for CRAβ140, Aβ1228, and Aβ142. The plot for CR Aβ1228 complex showed a relatively linear feature within the given temperature range with ?H = –10.1 ?0.6 kJ/mol and ?S = + 0.128 ? 0.002 kJ/(mol K). However, the plot for CRAβ140 and CRAβ142 complexes exhibited two distinct linear regions with opposite slopes centered at a specific temperature, Ts, which was 54.7 ? 0.2℃ and 34.8 ? 0.2℃, respectively. The ITC experiments conducted at 25℃in water exhibited quite a different situation from the above mentioned spectroscopic approach. The ITC studies yielded a ?H of –85.3 ? 0.2 kJ/mol for the CRAβ1228 complex with negative entropy change –0.152 kJ/mol K). For CRAβ140, the ITC studies indicated the presence of two binding sites with ?H1 = –81.8 ? 0.3 kJ/mol and ?H2 = –119.5 ? 0.2 kJ/mol with K1 = 5.5 ? 0.7 ? 106 M1 and K2 = 6.9 ? 2.4 ? 108 M1, respectively. These binding constants are consistent with the model suggested by several studies. Both binding sites showed negative entropy changes suggesting that the formation of the complex is enthalpically driven. The disagreement in thermochemical values between two different methods confirmed that the enthalpy and entropy are heavily dependent on temperature and buffer/salt environment, and may involve inherently different reaction paths.