AIM To investigate the protective effect of prostaglandin E1(PGE1) against endoplasmic reticulum(ER) stressinduced hepatocyte apoptosis, and to explore its underlying mechanisms.METHODS Thapsigargin(TG) was used to in...AIM To investigate the protective effect of prostaglandin E1(PGE1) against endoplasmic reticulum(ER) stressinduced hepatocyte apoptosis, and to explore its underlying mechanisms.METHODS Thapsigargin(TG) was used to induce ER stress in the human hepatic cell line L02 and hepatocarcinomaderived cell line Hep G2. To evaluate the effects of PGE1 on TG-induced apoptosis, PGE1 was used an hour prior to TG treatment. Activation of unfolded protein response signaling pathways were detected by western blotting and quantitative real-time RTPCR. Apoptotic index and cell viability of L02 cells and Hep G2 cells were determined with flow cytometry and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium] assay. RESULTS Pretreatment with 1 μmol/L PGE1 protected against TG-induced apoptosis in both L02 cells and Hep G2 cells. PGE1 enhanced the TG-induced expression of C/EBP homologous protein(CHOP), glucose-regulated protein(GRP) 78 and spliced X box-binding protein 1 at 6 h. However, it attenuated their expressions after 24 h. PGE1 alone induced protein and m RNA expressions of GRP78; PGE1 also induced protein expression of DNA damage-inducible gene 34 and inhibited the expressions of phospho-PKR-like ER kinase, phosphoeukaryotic initiation factor 2α and CHOP. Treatment with protein kinase A(PKA)-inhibitor H89 or KT5720 blocked PGE1-induced up-regulation of GRP78. Further, the cytoprotective effect of PGE1 on hepatocytes was not observed after blockade of GRP78 expression by H89 or small interfering RNA specifically targeted against human GRP78.CONCLUSION Our study demonstrates that PGE1 protects against ER stress-induced hepatocyte apoptosis via PKA pathwaydependent induction of GRP78 expression.展开更多
Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible ...Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dis- mutase 1 mutant (SOD1G93A) and wild-type (SOD1wv) mouse models were exposed to H202. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by flow cytometry. Moreover, we evaluated the expression of the adenos- ine monophosphate-activated protein kinase (AMPK) ct-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1wr cells, SOD1~93A embryonic neural stem cells were more likely to undergo H202-induced apoptosis. Phosphorylation of AMPKct in SOD1G93A cells was higher than that in SOD1wr cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKct. p53 protein levels were also correlated with AMPKct phosphorylation levels. Compound C, an inhibitor of AMPKa, attenuated the effects of H20~. These results suggest that embryonic neural stem cells from SOD1C93A mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKa pathway.展开更多
Objective To investigate effect of inhibiting melatonin biosynthesis on activities of protein kinase A (PKA), glycogen synthase kinase-3 (GSK-3) and tau phosphorylation at PS214 and M4 epitopes using haloperidol, a sp...Objective To investigate effect of inhibiting melatonin biosynthesis on activities of protein kinase A (PKA), glycogen synthase kinase-3 (GSK-3) and tau phosphorylation at PS214 and M4 epitopes using haloperidol, a specific inhibitor of 5-hydroxyindole-O-methyltransferase. Methods Brain ventricular and intraperitoneal injections were used for haloperidol administration, Western blots for tau phosphorylation, 32P-labeling for PKA and GSK-3 activity, and high performance liquid chromatograph for detection of serum melatonin levels. Results Haloperidol injection through the lateral ventricle and intraperitoneal reinforcement significantly stimulated PKA activity with a concurrent hyperphosphorylation of tau at M4 (Thr231/Ser235) and PS214 (Ser214) sites. Prior treatment of the rats using melatonin supplement for one week and reinforcement during the haloperidol administration arrested PKA activity and attenuated tau hyperphosphorylation. GSK-3 activity showed no obvious change after haloperidol injection, however, melatonin supplements and reinforcements during haloperidol infusion inactivated basal activity of GSK-3. Conclusion Decreased melatonin may be involved in Alzheimer-like tau hyperphosphorylation, and overactivation of PKA may play a crucial role in this process.展开更多
Retinal progenitor cells (RPCs) are neural stem cells able to differentiate into any normal adult retinal cell type, except for pigment epithelial cells. Retinoic acid (RA) is a powerful growth/differentiation fac...Retinal progenitor cells (RPCs) are neural stem cells able to differentiate into any normal adult retinal cell type, except for pigment epithelial cells. Retinoic acid (RA) is a powerful growth/differentiation factor that generally causes growth inhibition, differentiation and/or apoptosis. In this study, we demonstrate that RA not only affects mouse RPC differentiation but also improves cell survival by reducing spontaneous apoptotic rate without affecting RPC proliferation. The enhanced cell survival was accompanied by a significant upregulation of the expression of protein kinase A (PKA) and several protein kinase C (PKC) isoforms. Treatment of cells grown in RA-free media with 8-bromoadenosine3',5'-cyclic monophosphate, a known activator of PKA, resulted in an anti-apoptotic effect similar to that caused by RA; whereas the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesul- fonamide dihydrochloride led to a significant (-32%) increase in apoptosis. In contrast, treatment of RPCs with any of two PKC selective inhibitors, 2,2',3,3',4,4'-hexahydroxy-1,1 '-biphenyl-6,6'-dimethanol dimethyl ether and bisindolylmaleimide XI, led to diminished apoptosis; while a PKC activator, phorbol 12-myristate 13-acetate, increased apoptosis. These and other data suggest that the effect of RA on RPC survival is mostly due to the increased anti-apoptotic activity elicited by PKA, which might in turn be antagonized by PKC. Such a mechanism is a new example of tight regulation of important biological processes triggered by RA. Although the detailed mechanisms remain to be elucidated, we provide evidence that the pro-survival effect of RA on RPCs is not mediated by changed expression of p53 or bcl-2, and appears to be independent of 15-amyloid, Fas ligand, TNF-α, ganglioside GM1 and ceramide C 16-induced apoptotic pathways.展开更多
Objective: To investigate the regulation effect of protein kinase A on IL-6-induced STAT3 activation in myeloma cells. Methods: Two human myeloma cell lines-Sko-007 and U266 were pretreated with Forskolin, a protein k...Objective: To investigate the regulation effect of protein kinase A on IL-6-induced STAT3 activation in myeloma cells. Methods: Two human myeloma cell lines-Sko-007 and U266 were pretreated with Forskolin, a protein kinase A antagonist, and then stimulated by IL-6. The activation state of STAT3 in these two cells were examined by electrophoretic mobility shift assay (EMSA). Results: Although PKA pathway itself doesn’t participate in IL-6 signal transduction in Sko-007 and U266 cells, activation of protein kinase A can inhibit IL-6-induced STAT3 activation in these two cell lines. Conclusion: There exists an inhibitory effect of protein kinase A on STAT3 activation in human myeloma cells treated by IL-6.展开更多
Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for develo...Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for developing cardiovascular disease.Metabolic syndrome is associated with augmented sympathetic tone,which could account for the etiology of pre-diabetic cardiomyopathy.This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustainedβ-adrenergic response in pre-diabetes,focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy.The research reviewed indicates that both protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ play important roles in functional responses mediated byβ1-adrenoceptors;therefore,alterations in the expression or function of these kinases can be deleterious.This review also outlines recent information on the role of protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ in abnormal Ca^(2+)handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.展开更多
The aging process in mammals is correlated with changes in psychomotor performance, cognitive function, and ability to adapt to stress (Montgomery et al., 1982; Lorens et al., 1990). These changes may be related to al...The aging process in mammals is correlated with changes in psychomotor performance, cognitive function, and ability to adapt to stress (Montgomery et al., 1982; Lorens et al., 1990). These changes may be related to alterations in neuronal tissue that occur during the aging process. The normal aging process may be conceived of as the neuronal cell’s increasing inability to maintain normal cellular function which ultimately results in a number of morphological and biochemical changes. Morphologically, there is a loss of neuronal cells with increasing age (Brizzee and展开更多
AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological p...AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological parameters. METHODS: Western blot was used to measure the expression of extracellular signal-regulated kinase (ERK)-1, ERK-2, ERK-3, p38 and mitogen or ERK activated protein kinaseMEK-1 proteins in surgically resected gastric carcinoma, adjacent normal mucosa and metastatic lymph nodes from 42 patients. Immunohistochemistry was employed for their localization. RESULTS: Compared with normal tissues, the protein levels of ERK-1 (integral optical density value 159 526?5 760 vs 122 807±65 515, P= 0.001), ERK-2 (168 471±95 051 vs 120 469±72 874, P<0.001), ERK-3 (118 651±71 513 vs 70 934±68 058,P<0.001), P38 (104 776±51 650 vs 82 930±40 392, P= 0.048) and MEK-1 (116 486±45 725 vs 101 434±49 387, P = 0.027) were increased in gastric cancer tissues. Overexpression of ERK-3 was correlated to TNM staging [average ratio of integral optic density (IOD)tumor: IODnormal in TNM I, II, III, IV tumors was 1.43±0.34, 5.08±3.74, 4.99±1.08, 1.44±1.02, n = 42, P= 0.023] and serosa invasion (4.31±4.34 vs 2.00±2.03, P = 0.037). In poorly differentiated cancers (n = 33), the protein levels of ERK-1 and ERK-2 in stage III and IV tumors were higher than those in stage I and II tumors (2.64+3.01 vs 1.01±0.33, P= 0.022; 2.05±1.54 vs1.24±0.40, P= 0.030). Gastric cancer tissues with either lymph node involvement (2.49±2.91 vs1.03±0.36, P= 0.023; 1.98±1.49vs1.24±0.44, P= 0.036) or serosa invasion (2.39±2.82 vs 1.01±0.35, P= 0.022; 1.95±1.44 vs1.14±0.36, P=0.015) expressed higher protein levels of ERK-1 and ERK-2. In Borrmann II tumors, expression of ERK-2 and ERK-3 was increased compared with Borrmann III tumors (2.57±1.86 vs1.23±0.60, P= 0.022; 5.50±5.05 vs1.83±1.21, P= 0.014). Borrmann IV tumors expressed higher p38 protein levels. No statistically significant difference in expression of MAPKs was found when stratified to tumor size or histological grade (P>0.05). Protein levels of ERK-2, ERK-3 and MEK-1 in metastatic lymph nodes were 2-7 folds higher than those in adjacent normal mucosa. The immunohistochemistry demonstrated that ERK-1, ERK-2, ERK-3, p38 and MEK-1 proteins were mainly localized in cytoplasm. The expression of MEK-1 in gastric cancer cells metastasized to lymph nodes was higher than that of the primary site. CONCLUSION: MAPKs, particularly ERK subclass are overexpressed in the majority of gastric cancers. Overexpression of ERKs is correlated to TNM staging, serosa invasion, and lymph node involvement. The overexpression of p38 most likely plays a prominent role in certain morphological subtypes of gastric cancers. MEK-1 is also overexpressed in gastric cancer, particularly in metastatic lymph nodes. Upregulation of MARK signal transduction pathways may play an important role in tumorigenesis and metastatic potential of gastric cancer.展开更多
The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, inc...The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, including extracellular signal-regulated kinase(ERK), serine-threonine protein kinase(Akt) and c-Jun N-terminal kinase(JNK) signaling pathways. We established a rat model of acute spinal cord injury by inserting a catheter balloon in the left subclavian artery for 25 minutes. Rat models exhibited notable hindlimb dysfunction. Apoptotic cells were abundant in the anterior horn and central canal of the spinal cord. The number of apoptotic neurons was highest 48 hours post injury. The expression of phosphorylated Akt(pAkt) and phosphorylated ERK(p-ERK) increased immediately after reperfusion, peaked at 4 hours(p-Akt) or 2 hours(p-ERK), decreased at 12 hours, and then increased at 24 hours. Phosphorylated JNK expression reduced after reperfusion, increased at 12 hours to near normal levels, and then showed a downward trend at 24 hours. Pearson linear correlation analysis also demonstrated that the number of apoptotic cells negatively correlated with p-Akt expression. These findings suggest that activation of Akt may be a key contributing factor in the delay of neuronal apoptosis after spinal cord ischemia, particularly at the stage of reperfusion, and thus may be a target for neuronal protection and reduction of neuronal apoptosis after spinal cord injury.展开更多
Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor $B239063 into Swedish mutant amyloid precursor protein (APP/SW...Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor $B239063 into Swedish mutant amyloid precursor protein (APP/SWE) transgenic and non-transgenic mice. The number of surviving neurons in the penumbra was quantified using Nissl staining, and the activity of p38 MAPKs was measured by western blotting. The number of surviving neurons in the penumbra was significantly reduced in APP/SWE transgenic mice compared with non-transgenic controls 7 days after cerebral ischemia, but the activity of p38 MAPKs was significantly elevated compared with the non-ischemic hemisphere in the APP/SWE transgenic mice. SB239063 prevented these changes. The APP/SWE mutation exacerbated ischemic brain injury, and this could be alleviated by inhibiting p38 MAPK activity.展开更多
Objective: To study the effect of active compound 6F and A from Pteris semipinnata L.(PsL) on the activities of DNA topoisomerase (TOPO) I and II, activities of cytosolic and membrane TPK, and expression of oncogene c...Objective: To study the effect of active compound 6F and A from Pteris semipinnata L.(PsL) on the activities of DNA topoisomerase (TOPO) I and II, activities of cytosolic and membrane TPK, and expression of oncogene c-myc in lung adenocarcinoma cells. Methods: The effect of compound 6F and A on activities of cytosolic and membrane TPK was measured by scintillation counting; the effect of compound A on expression of oncogene c-myc was determined by flow cytometry indirect fluorimetry. Results: compound 6F and A could inhibit the activities of TOPO I, and they strongly inhibited the TOPO II in 0.01 mg/L and 10.0 mg/L respectively. Compound A slightly inhibited the activities of membrane TPK, but not the cytosolic one. Compound A could inhibit the expression of oncogene c-myc. Conclusion: Topoisomerases are target of compound 6F and A. Compound A could slightly inhibit the activities of TPK, and showed an inhibitory effect on the expression of oncogene c-myc.展开更多
BACKGROUND: Activated N-methyl-D-aspartate (NMDA) receptor is involved in the formation of chronic neuropathic pain, and its antagonist, ketamine, exhibits effective amelioration of diabetic neuropathic pain (DNP...BACKGROUND: Activated N-methyl-D-aspartate (NMDA) receptor is involved in the formation of chronic neuropathic pain, and its antagonist, ketamine, exhibits effective amelioration of diabetic neuropathic pain (DNP). However, the mechanisms of NMDA receptor participation in the formation and maintenance of DNP remain poorly understood. OBJECTIVE: To evaluate the role NMDA receptor plays in DNP and effects on p38 mitogen activated protein kinase (p38 MAPK) in a rat model of DNP. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Human Embryonic Stem Cell Research Institute of Yunyang Medical College Affiliated Taihe Hospital between July 2005 and September 2007. MATERIALS: Streptozotocin was provided by Sigma, USA; p38 MAPK inhibitor (SB203580) was provided by Shanghai KangChen Biotech, China; NMDA receptor antagonist (MK-801) was purchased from Shanghai Yope Biotech, China. METHODS: A total of 128 healthy, Wistar rats of clean grade, aged 3 months and weighing 180- 220 g, were randomly assigned to 4 groups: control, DNP model, p38 MAPK, and NMDA receptor. Each group contained 32 rats. DNP was established in all groups except for the control group by intraperitoneal injection of streptozocin (65 mg/kg). Subsequently, 1 mg/kg SB203580 and 1 mg/kg MK-801 were injected once each week via intraperitoneal injection in the p38 MAPK and NMDA receptor groups, respectively. MAIN OUTCOME MEASURES: At the end of 2, 4, 6, and 8 weeks following streptozotocin injection, mechanical withdrawal threshold was measured in 8 animals from each group following von Frey filament stimulation. The rats were anesthetized and nerve conduction velocity of the left sciatic nerve was measured. Subsequently, the right sciatic nerve, the lumbar segment of the spinal cord, and dorsal root ganglia were removed from the L3-6 segment for microscopic examination, p38 MAPK expression was determined using immunohistochemistry and Western blot analysis. Expression of NMDA receptor 1 mRNA in dorsal root ganglion and spinal cord neurons was detected using RT-PCR. RESULTS: Mechanical withdrawal threshold and nerve conduction velocity were significantly reduced, and p38 MAPK and NMDA receptor 1 mRNA expression in the spinal cord and dorsal root ganglia were significantly increased, in the model, p38 MAPK, and NMDA receptor groups compared with the control group at all time points (P 〈 0.05). At 4-8 weeks following successful DNP model establishment, SB203580 and MK-801 increased mechanical withdrawal threshold, accelerated nerve conduction velocity, and attenuated p38 MAPK expression, compared with the model group. The NMDA receptor group exhibited downregulated mRNA expression of NMDA receptor 1 compared with the model and p38 MAPK groups (P 〈 0.05). CONCLUSION: NMDA receptor was highly expressed in the brains of DNP rats and was involved in DNP development via activation of the p38 MAPK signal pathway.展开更多
Objective: To investigate DNA-dependent protein kinase (DNA-PK) expression,and its relationship with lymphat-ic metastasis in colorectal cancer. Methods: Tumor tissues from 60 patients,divided into two groups accordin...Objective: To investigate DNA-dependent protein kinase (DNA-PK) expression,and its relationship with lymphat-ic metastasis in colorectal cancer. Methods: Tumor tissues from 60 patients,divided into two groups according to lymphatic metastasis,were immunohistochemically stained to detect the DNA-PK expression including Ku70,Ku80 and PKcs proteins. Results: Positivity of both Ku70 and Ku80 in colorectal cancer was negatively correlated with lymphatic metastasis with an r value of -0.57 and -0.38,respectively. Similar correlation was found between Ku expression,especially Ku70,and long-term survival. PKcs,however,displayed no significant correlation. Statistical analysis failed to detect any correlation between DNA-PK expression,and clinical characteristics,such as age,sex,tumor location,tumor thickness and distant metastasis (P>0.05). Conclusion: DNA-PK expression,especially Ku70 expression,is negatively correlated with lymphatic metastasis,and the survival of patients with colorectal cancer. Ku70 expression may be a potential indicator for the preoperative evaluation,and prognosis in colorectal cancer.展开更多
Previous research reported litchi thaumatin-like protein(LcTLP)could lead to inflammation,which is a factor causing the adverse reactions after excessive intake of litchi.As a main amino acid in litchi pulp,γ-aminobu...Previous research reported litchi thaumatin-like protein(LcTLP)could lead to inflammation,which is a factor causing the adverse reactions after excessive intake of litchi.As a main amino acid in litchi pulp,γ-aminobutyric acid(GABA)was found with anti-inflammatory effect.Therefore,this study aimed to investigate the effects of GABA on LcTLP-induced inflammation through RAW264.7 macrophages and C57BL mice models.In vitro study showed GABA could effectively regulate the level of inflammatory cytokines(interleukin(IL)-1β,IL-6,IL-10,and prostaglandin E2)and Ca2+in cells,and inhibit the phosphorylation of p65,IκB,p38,c-Jun N-terminal kinase(JNK)and extracellular signal-regulated kinase(ERK).These results indicate GABA alleviated inflammation through nuclear factor-κB and mitogen-activated protein kinase pathway signaling pathways.In vivo experiment was performed to verify the anti-inflammatory effect of GABA,and the results demonstrated that GABA reduced the inflammation and oxidative stress in the liver of LcTLP-treated mice,as it down-regulated the pro-inflammatory cytokines,malondialdehyde,aspartate transferase,and alanine transaminase.The relative expression of phosphorylated p38,JNK and ERK in mice liver with GABA treatment were reduced to 65%,39%and 80%of the control group,respectively.Furthermore,GABA treatment enriched probiotic bacteria and decreased pathogenic bacteria in mice gut,which reveals GABA could effectively reduce the translocation of gut microbiota.展开更多
We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's d...We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's disease.In addition,depression is a risk factor for developing Alzheimer's disease,as well as an early clinical manifestation of Alzheimer's disease.Meanwhile,cognitive dysfunction is a distinctive feature of major depressive disorder.Therefore,DAPK1 may be related to cognitive dysfunction in major depressive disorder.In this study,we established a mouse model of major depressive disorder by housing mice individually and exposing them to chronic,mild,unpredictable stressors.We found that DAPK1 and tau protein levels were increased in the hippocampal CA3 area,and tau was hyperphosphorylated at Thr231,Ser262,and Ser396 in these mice.Furthermore,DAPK1 shifted from axonal expression to overexpression on the cell membrane.Exercise and treatment with the antidepressant drug citalopram decreased DAPK1 expression and tau protein phosphorylation in hippocampal tissue and improved both depressive symptoms and cognitive dysfunction.These results indicate that DAPK1 may be a potential reason and therapeutic target of cognitive dysfunction in major depressive disorder.展开更多
Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of a...Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury.展开更多
Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB le...Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis.展开更多
BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its d...BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its damage is an important indicator of DR.Receptor for activated C kinase 1(RACK1)activates protein kinase C-ε(PKC-ε)to promote the generation of reactive oxygen species(ROS)in RPE cells,leading to apoptosis.Therefore,we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS,thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR.AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR.METHODS In this study,Sprague-Dawley rats and adult RPE cell line-19(ARPE-19)cells were used as in vivo and in vitro models,respectively,to explore the role of RACK1 in mediating PKC-εin early DR.Furthermore,the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model.RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and upregulated expression of RACK1 and PKC-εproteins in RPE cells following a prolonged modeling.Similarly,ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε,accompanied by an increases in ROS production,apoptosis rate,and monolayer permeability.However,silencing RACK1 significantly downregulated the expression of PKC-εand ROS,reduced cell apoptosis and permeability,and protected barrier function.CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.展开更多
The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Blac...The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Black spot is one of the most serious fungal diseases of pear which is an important part of the fruit industry in China.The MAPKK genes have been identified in many plants,however,none has been reported in pear(Pyrus bretschneideri).In order to explore whether MAPK gene of pear is related to black spot disease,we designed this experiment.The present study investigated eight putative PbrMAPKK genes obtained from the Chinese white pear genome.The phylogenetic analysis revealed that PbrMAPKK genes were divided into A,B,C,and D groups.These PbrMAPKK genes are randomly distributed on 7 out of 17 chromosomes and mainly originated from the whole-genome duplication(WGD)event.The expression analysis of PbrMAPKK genes in seven pear tissues and the leaves of susceptible and resistant varieties after Alternaria alternata infection by quantitative real-time PCR(qRT-PCR)identified seven candidate genes associated with resistance.Furthermore,virus-induced gene silencing(VIGS)indicated that PbrMAPKK6 gene enhanced resistance to pear black spot disease in pear.展开更多
In mammals,microRNAs(miRNAs)play key roles in multiple biological processes by regulating the expression of target genes.Studies have found that the levels of miR-370-5p expression differ significantly in the skins of...In mammals,microRNAs(miRNAs)play key roles in multiple biological processes by regulating the expression of target genes.Studies have found that the levels of miR-370-5p expression differ significantly in the skins of sheep with different hair colors;however,its function remains unclear.In this study,we investigated the roles of miR-370-5p in sheep melanocytes and found that the overexpression of miR-370-5p significantly inhibited cell proliferation(P<0.01),tyrosinase activity(P=0.001)and significantly reduced(P<0.001)melanin production.Functional prediction revealed that the 3′-untranslated region(UTR)of MAP3K8 has a putative miR-370-5p binding site,and the interaction between these two molecules was confirmed using luciferase reporter assays.In situ hybridization assays revealed that MAP3K8 is expressed in the cytoplasm of melanocytes.The results of quantitative RT-PCR and Western blotting analyses revealed that overexpression of miR-370-5p in melanocytes significantly inhibits(P<0.01)MAP3K8 expression via direct targeting of its 3′UTR.Inhibition of MAP3K8 expression by siRNA-MAP3K8 transfection induced a significant inhibition(P<0.01)of melanocyte proliferation and significant reduction(P<0.001)in melanin production,which is consistent with our observations for miR-370-5p.Target gene rescue experiments indicated that the expression of MAP3K8 in melanocytes co-transfected with miR-370-5p and MAP3K8-cDNA(containing sites for the targeted binding to miR-370-5p)was significantly rescued(P≤0.001),which subsequently promoted significant increases in cell proliferation(P<0.001)and melanin production(P<0.01).Collectively,these findings indicate that miR-370-5p plays a functional role in inhibiting sheep melanocyte proliferation and melanogenesis by downregulating the expression of MAP3K8.展开更多
基金Supported by the National Natural Science Foundation of China,No.81160067 and No.814600124
文摘AIM To investigate the protective effect of prostaglandin E1(PGE1) against endoplasmic reticulum(ER) stressinduced hepatocyte apoptosis, and to explore its underlying mechanisms.METHODS Thapsigargin(TG) was used to induce ER stress in the human hepatic cell line L02 and hepatocarcinomaderived cell line Hep G2. To evaluate the effects of PGE1 on TG-induced apoptosis, PGE1 was used an hour prior to TG treatment. Activation of unfolded protein response signaling pathways were detected by western blotting and quantitative real-time RTPCR. Apoptotic index and cell viability of L02 cells and Hep G2 cells were determined with flow cytometry and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium] assay. RESULTS Pretreatment with 1 μmol/L PGE1 protected against TG-induced apoptosis in both L02 cells and Hep G2 cells. PGE1 enhanced the TG-induced expression of C/EBP homologous protein(CHOP), glucose-regulated protein(GRP) 78 and spliced X box-binding protein 1 at 6 h. However, it attenuated their expressions after 24 h. PGE1 alone induced protein and m RNA expressions of GRP78; PGE1 also induced protein expression of DNA damage-inducible gene 34 and inhibited the expressions of phospho-PKR-like ER kinase, phosphoeukaryotic initiation factor 2α and CHOP. Treatment with protein kinase A(PKA)-inhibitor H89 or KT5720 blocked PGE1-induced up-regulation of GRP78. Further, the cytoprotective effect of PGE1 on hepatocytes was not observed after blockade of GRP78 expression by H89 or small interfering RNA specifically targeted against human GRP78.CONCLUSION Our study demonstrates that PGE1 protects against ER stress-induced hepatocyte apoptosis via PKA pathwaydependent induction of GRP78 expression.
基金supported by a grant from the National Natural Sciences Foundation of China,No.81030019
文摘Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dis- mutase 1 mutant (SOD1G93A) and wild-type (SOD1wv) mouse models were exposed to H202. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by flow cytometry. Moreover, we evaluated the expression of the adenos- ine monophosphate-activated protein kinase (AMPK) ct-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1wr cells, SOD1~93A embryonic neural stem cells were more likely to undergo H202-induced apoptosis. Phosphorylation of AMPKct in SOD1G93A cells was higher than that in SOD1wr cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKct. p53 protein levels were also correlated with AMPKct phosphorylation levels. Compound C, an inhibitor of AMPKa, attenuated the effects of H20~. These results suggest that embryonic neural stem cells from SOD1C93A mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKa pathway.
基金Supported by grands from theNaturalScience Foundation of China(39925012 and 30170221 ),and the Scienceand Technology Committee of China (G1999054007).
文摘Objective To investigate effect of inhibiting melatonin biosynthesis on activities of protein kinase A (PKA), glycogen synthase kinase-3 (GSK-3) and tau phosphorylation at PS214 and M4 epitopes using haloperidol, a specific inhibitor of 5-hydroxyindole-O-methyltransferase. Methods Brain ventricular and intraperitoneal injections were used for haloperidol administration, Western blots for tau phosphorylation, 32P-labeling for PKA and GSK-3 activity, and high performance liquid chromatograph for detection of serum melatonin levels. Results Haloperidol injection through the lateral ventricle and intraperitoneal reinforcement significantly stimulated PKA activity with a concurrent hyperphosphorylation of tau at M4 (Thr231/Ser235) and PS214 (Ser214) sites. Prior treatment of the rats using melatonin supplement for one week and reinforcement during the haloperidol administration arrested PKA activity and attenuated tau hyperphosphorylation. GSK-3 activity showed no obvious change after haloperidol injection, however, melatonin supplements and reinforcements during haloperidol infusion inactivated basal activity of GSK-3. Conclusion Decreased melatonin may be involved in Alzheimer-like tau hyperphosphorylation, and overactivation of PKA may play a crucial role in this process.
文摘Retinal progenitor cells (RPCs) are neural stem cells able to differentiate into any normal adult retinal cell type, except for pigment epithelial cells. Retinoic acid (RA) is a powerful growth/differentiation factor that generally causes growth inhibition, differentiation and/or apoptosis. In this study, we demonstrate that RA not only affects mouse RPC differentiation but also improves cell survival by reducing spontaneous apoptotic rate without affecting RPC proliferation. The enhanced cell survival was accompanied by a significant upregulation of the expression of protein kinase A (PKA) and several protein kinase C (PKC) isoforms. Treatment of cells grown in RA-free media with 8-bromoadenosine3',5'-cyclic monophosphate, a known activator of PKA, resulted in an anti-apoptotic effect similar to that caused by RA; whereas the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesul- fonamide dihydrochloride led to a significant (-32%) increase in apoptosis. In contrast, treatment of RPCs with any of two PKC selective inhibitors, 2,2',3,3',4,4'-hexahydroxy-1,1 '-biphenyl-6,6'-dimethanol dimethyl ether and bisindolylmaleimide XI, led to diminished apoptosis; while a PKC activator, phorbol 12-myristate 13-acetate, increased apoptosis. These and other data suggest that the effect of RA on RPC survival is mostly due to the increased anti-apoptotic activity elicited by PKA, which might in turn be antagonized by PKC. Such a mechanism is a new example of tight regulation of important biological processes triggered by RA. Although the detailed mechanisms remain to be elucidated, we provide evidence that the pro-survival effect of RA on RPCs is not mediated by changed expression of p53 or bcl-2, and appears to be independent of 15-amyloid, Fas ligand, TNF-α, ganglioside GM1 and ceramide C 16-induced apoptotic pathways.
基金This work was supported by the national natural Science Foundation of China (No. 39925019)
文摘Objective: To investigate the regulation effect of protein kinase A on IL-6-induced STAT3 activation in myeloma cells. Methods: Two human myeloma cell lines-Sko-007 and U266 were pretreated with Forskolin, a protein kinase A antagonist, and then stimulated by IL-6. The activation state of STAT3 in these two cells were examined by electrophoretic mobility shift assay (EMSA). Results: Although PKA pathway itself doesn’t participate in IL-6 signal transduction in Sko-007 and U266 cells, activation of protein kinase A can inhibit IL-6-induced STAT3 activation in these two cell lines. Conclusion: There exists an inhibitory effect of protein kinase A on STAT3 activation in human myeloma cells treated by IL-6.
文摘Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for developing cardiovascular disease.Metabolic syndrome is associated with augmented sympathetic tone,which could account for the etiology of pre-diabetic cardiomyopathy.This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustainedβ-adrenergic response in pre-diabetes,focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy.The research reviewed indicates that both protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ play important roles in functional responses mediated byβ1-adrenoceptors;therefore,alterations in the expression or function of these kinases can be deleterious.This review also outlines recent information on the role of protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ in abnormal Ca^(2+)handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.
文摘The aging process in mammals is correlated with changes in psychomotor performance, cognitive function, and ability to adapt to stress (Montgomery et al., 1982; Lorens et al., 1990). These changes may be related to alterations in neuronal tissue that occur during the aging process. The normal aging process may be conceived of as the neuronal cell’s increasing inability to maintain normal cellular function which ultimately results in a number of morphological and biochemical changes. Morphologically, there is a loss of neuronal cells with increasing age (Brizzee and
基金Supported by Technology Foundation of Ministry of Education, China
文摘AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological parameters. METHODS: Western blot was used to measure the expression of extracellular signal-regulated kinase (ERK)-1, ERK-2, ERK-3, p38 and mitogen or ERK activated protein kinaseMEK-1 proteins in surgically resected gastric carcinoma, adjacent normal mucosa and metastatic lymph nodes from 42 patients. Immunohistochemistry was employed for their localization. RESULTS: Compared with normal tissues, the protein levels of ERK-1 (integral optical density value 159 526?5 760 vs 122 807±65 515, P= 0.001), ERK-2 (168 471±95 051 vs 120 469±72 874, P<0.001), ERK-3 (118 651±71 513 vs 70 934±68 058,P<0.001), P38 (104 776±51 650 vs 82 930±40 392, P= 0.048) and MEK-1 (116 486±45 725 vs 101 434±49 387, P = 0.027) were increased in gastric cancer tissues. Overexpression of ERK-3 was correlated to TNM staging [average ratio of integral optic density (IOD)tumor: IODnormal in TNM I, II, III, IV tumors was 1.43±0.34, 5.08±3.74, 4.99±1.08, 1.44±1.02, n = 42, P= 0.023] and serosa invasion (4.31±4.34 vs 2.00±2.03, P = 0.037). In poorly differentiated cancers (n = 33), the protein levels of ERK-1 and ERK-2 in stage III and IV tumors were higher than those in stage I and II tumors (2.64+3.01 vs 1.01±0.33, P= 0.022; 2.05±1.54 vs1.24±0.40, P= 0.030). Gastric cancer tissues with either lymph node involvement (2.49±2.91 vs1.03±0.36, P= 0.023; 1.98±1.49vs1.24±0.44, P= 0.036) or serosa invasion (2.39±2.82 vs 1.01±0.35, P= 0.022; 1.95±1.44 vs1.14±0.36, P=0.015) expressed higher protein levels of ERK-1 and ERK-2. In Borrmann II tumors, expression of ERK-2 and ERK-3 was increased compared with Borrmann III tumors (2.57±1.86 vs1.23±0.60, P= 0.022; 5.50±5.05 vs1.83±1.21, P= 0.014). Borrmann IV tumors expressed higher p38 protein levels. No statistically significant difference in expression of MAPKs was found when stratified to tumor size or histological grade (P>0.05). Protein levels of ERK-2, ERK-3 and MEK-1 in metastatic lymph nodes were 2-7 folds higher than those in adjacent normal mucosa. The immunohistochemistry demonstrated that ERK-1, ERK-2, ERK-3, p38 and MEK-1 proteins were mainly localized in cytoplasm. The expression of MEK-1 in gastric cancer cells metastasized to lymph nodes was higher than that of the primary site. CONCLUSION: MAPKs, particularly ERK subclass are overexpressed in the majority of gastric cancers. Overexpression of ERKs is correlated to TNM staging, serosa invasion, and lymph node involvement. The overexpression of p38 most likely plays a prominent role in certain morphological subtypes of gastric cancers. MEK-1 is also overexpressed in gastric cancer, particularly in metastatic lymph nodes. Upregulation of MARK signal transduction pathways may play an important role in tumorigenesis and metastatic potential of gastric cancer.
基金supported by the National Natural Science Foundation of ChinaNo.81271387+3 种基金the Research Special Fund of Public Welfare and Health Department of ChinaNo.201402009the National Key Technology R&D Program in ChinaNo.Z141107002514031
文摘The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, including extracellular signal-regulated kinase(ERK), serine-threonine protein kinase(Akt) and c-Jun N-terminal kinase(JNK) signaling pathways. We established a rat model of acute spinal cord injury by inserting a catheter balloon in the left subclavian artery for 25 minutes. Rat models exhibited notable hindlimb dysfunction. Apoptotic cells were abundant in the anterior horn and central canal of the spinal cord. The number of apoptotic neurons was highest 48 hours post injury. The expression of phosphorylated Akt(pAkt) and phosphorylated ERK(p-ERK) increased immediately after reperfusion, peaked at 4 hours(p-Akt) or 2 hours(p-ERK), decreased at 12 hours, and then increased at 24 hours. Phosphorylated JNK expression reduced after reperfusion, increased at 12 hours to near normal levels, and then showed a downward trend at 24 hours. Pearson linear correlation analysis also demonstrated that the number of apoptotic cells negatively correlated with p-Akt expression. These findings suggest that activation of Akt may be a key contributing factor in the delay of neuronal apoptosis after spinal cord ischemia, particularly at the stage of reperfusion, and thus may be a target for neuronal protection and reduction of neuronal apoptosis after spinal cord injury.
基金supported by the National Natural Science Foundation of China, No. 81171191Shenzhen Bureau of Science Technology and Information, No. 201002013+1 种基金Guangdong Province Medical Science Fund, No. A2008601 and Jinan University Scientific Research Foundation for Creation and Cultivation, No. 21609708
文摘Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor $B239063 into Swedish mutant amyloid precursor protein (APP/SWE) transgenic and non-transgenic mice. The number of surviving neurons in the penumbra was quantified using Nissl staining, and the activity of p38 MAPKs was measured by western blotting. The number of surviving neurons in the penumbra was significantly reduced in APP/SWE transgenic mice compared with non-transgenic controls 7 days after cerebral ischemia, but the activity of p38 MAPKs was significantly elevated compared with the non-ischemic hemisphere in the APP/SWE transgenic mice. SB239063 prevented these changes. The APP/SWE mutation exacerbated ischemic brain injury, and this could be alleviated by inhibiting p38 MAPK activity.
基金the National Natural Science Foundation of China (No. 39870900) and the key project grant from Guangdong Province Science and Te
文摘Objective: To study the effect of active compound 6F and A from Pteris semipinnata L.(PsL) on the activities of DNA topoisomerase (TOPO) I and II, activities of cytosolic and membrane TPK, and expression of oncogene c-myc in lung adenocarcinoma cells. Methods: The effect of compound 6F and A on activities of cytosolic and membrane TPK was measured by scintillation counting; the effect of compound A on expression of oncogene c-myc was determined by flow cytometry indirect fluorimetry. Results: compound 6F and A could inhibit the activities of TOPO I, and they strongly inhibited the TOPO II in 0.01 mg/L and 10.0 mg/L respectively. Compound A slightly inhibited the activities of membrane TPK, but not the cytosolic one. Compound A could inhibit the expression of oncogene c-myc. Conclusion: Topoisomerases are target of compound 6F and A. Compound A could slightly inhibit the activities of TPK, and showed an inhibitory effect on the expression of oncogene c-myc.
基金a Grant from Hubei Provincial Health Ministry,No.JX3C58
文摘BACKGROUND: Activated N-methyl-D-aspartate (NMDA) receptor is involved in the formation of chronic neuropathic pain, and its antagonist, ketamine, exhibits effective amelioration of diabetic neuropathic pain (DNP). However, the mechanisms of NMDA receptor participation in the formation and maintenance of DNP remain poorly understood. OBJECTIVE: To evaluate the role NMDA receptor plays in DNP and effects on p38 mitogen activated protein kinase (p38 MAPK) in a rat model of DNP. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Human Embryonic Stem Cell Research Institute of Yunyang Medical College Affiliated Taihe Hospital between July 2005 and September 2007. MATERIALS: Streptozotocin was provided by Sigma, USA; p38 MAPK inhibitor (SB203580) was provided by Shanghai KangChen Biotech, China; NMDA receptor antagonist (MK-801) was purchased from Shanghai Yope Biotech, China. METHODS: A total of 128 healthy, Wistar rats of clean grade, aged 3 months and weighing 180- 220 g, were randomly assigned to 4 groups: control, DNP model, p38 MAPK, and NMDA receptor. Each group contained 32 rats. DNP was established in all groups except for the control group by intraperitoneal injection of streptozocin (65 mg/kg). Subsequently, 1 mg/kg SB203580 and 1 mg/kg MK-801 were injected once each week via intraperitoneal injection in the p38 MAPK and NMDA receptor groups, respectively. MAIN OUTCOME MEASURES: At the end of 2, 4, 6, and 8 weeks following streptozotocin injection, mechanical withdrawal threshold was measured in 8 animals from each group following von Frey filament stimulation. The rats were anesthetized and nerve conduction velocity of the left sciatic nerve was measured. Subsequently, the right sciatic nerve, the lumbar segment of the spinal cord, and dorsal root ganglia were removed from the L3-6 segment for microscopic examination, p38 MAPK expression was determined using immunohistochemistry and Western blot analysis. Expression of NMDA receptor 1 mRNA in dorsal root ganglion and spinal cord neurons was detected using RT-PCR. RESULTS: Mechanical withdrawal threshold and nerve conduction velocity were significantly reduced, and p38 MAPK and NMDA receptor 1 mRNA expression in the spinal cord and dorsal root ganglia were significantly increased, in the model, p38 MAPK, and NMDA receptor groups compared with the control group at all time points (P 〈 0.05). At 4-8 weeks following successful DNP model establishment, SB203580 and MK-801 increased mechanical withdrawal threshold, accelerated nerve conduction velocity, and attenuated p38 MAPK expression, compared with the model group. The NMDA receptor group exhibited downregulated mRNA expression of NMDA receptor 1 compared with the model and p38 MAPK groups (P 〈 0.05). CONCLUSION: NMDA receptor was highly expressed in the brains of DNP rats and was involved in DNP development via activation of the p38 MAPK signal pathway.
基金a grant from the Scientific Research Project of the Bureau of Health of Jiading in Shanghai (No KYXM-2004-11-07)
文摘Objective: To investigate DNA-dependent protein kinase (DNA-PK) expression,and its relationship with lymphat-ic metastasis in colorectal cancer. Methods: Tumor tissues from 60 patients,divided into two groups according to lymphatic metastasis,were immunohistochemically stained to detect the DNA-PK expression including Ku70,Ku80 and PKcs proteins. Results: Positivity of both Ku70 and Ku80 in colorectal cancer was negatively correlated with lymphatic metastasis with an r value of -0.57 and -0.38,respectively. Similar correlation was found between Ku expression,especially Ku70,and long-term survival. PKcs,however,displayed no significant correlation. Statistical analysis failed to detect any correlation between DNA-PK expression,and clinical characteristics,such as age,sex,tumor location,tumor thickness and distant metastasis (P>0.05). Conclusion: DNA-PK expression,especially Ku70 expression,is negatively correlated with lymphatic metastasis,and the survival of patients with colorectal cancer. Ku70 expression may be a potential indicator for the preoperative evaluation,and prognosis in colorectal cancer.
基金supported by China Agriculture Research System of MOF and MARA(CARS-32)the Guangzhou Wanglaoji Lychee Industry Research Project(5100-H220577)+2 种基金the Science and Technology Planning Project of Guangzhou City of China(202103000054)the National Natural Science Foundation of China(32202022)the Dongguan Key R&D Programme(2022120030008).
文摘Previous research reported litchi thaumatin-like protein(LcTLP)could lead to inflammation,which is a factor causing the adverse reactions after excessive intake of litchi.As a main amino acid in litchi pulp,γ-aminobutyric acid(GABA)was found with anti-inflammatory effect.Therefore,this study aimed to investigate the effects of GABA on LcTLP-induced inflammation through RAW264.7 macrophages and C57BL mice models.In vitro study showed GABA could effectively regulate the level of inflammatory cytokines(interleukin(IL)-1β,IL-6,IL-10,and prostaglandin E2)and Ca2+in cells,and inhibit the phosphorylation of p65,IκB,p38,c-Jun N-terminal kinase(JNK)and extracellular signal-regulated kinase(ERK).These results indicate GABA alleviated inflammation through nuclear factor-κB and mitogen-activated protein kinase pathway signaling pathways.In vivo experiment was performed to verify the anti-inflammatory effect of GABA,and the results demonstrated that GABA reduced the inflammation and oxidative stress in the liver of LcTLP-treated mice,as it down-regulated the pro-inflammatory cytokines,malondialdehyde,aspartate transferase,and alanine transaminase.The relative expression of phosphorylated p38,JNK and ERK in mice liver with GABA treatment were reduced to 65%,39%and 80%of the control group,respectively.Furthermore,GABA treatment enriched probiotic bacteria and decreased pathogenic bacteria in mice gut,which reveals GABA could effectively reduce the translocation of gut microbiota.
基金supported by the Department of Science and Technology of Henan Province,Nos.192102310084(to HCZ),222102310143(to DXD)the Youth Fund of School of Basic Medical Sciences of Zhengzhou University,No.JCYXY2017-YQ-07(to DXD)。
文摘We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's disease.In addition,depression is a risk factor for developing Alzheimer's disease,as well as an early clinical manifestation of Alzheimer's disease.Meanwhile,cognitive dysfunction is a distinctive feature of major depressive disorder.Therefore,DAPK1 may be related to cognitive dysfunction in major depressive disorder.In this study,we established a mouse model of major depressive disorder by housing mice individually and exposing them to chronic,mild,unpredictable stressors.We found that DAPK1 and tau protein levels were increased in the hippocampal CA3 area,and tau was hyperphosphorylated at Thr231,Ser262,and Ser396 in these mice.Furthermore,DAPK1 shifted from axonal expression to overexpression on the cell membrane.Exercise and treatment with the antidepressant drug citalopram decreased DAPK1 expression and tau protein phosphorylation in hippocampal tissue and improved both depressive symptoms and cognitive dysfunction.These results indicate that DAPK1 may be a potential reason and therapeutic target of cognitive dysfunction in major depressive disorder.
基金supported by the Natural Nature Science Foundation of China,Nos.82030071,81874004the Science and Technology Major Project of Changsha,No.kh2103008(all to JZH).
文摘Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury.
基金supported by Research Start-up Funding of Shenzhen Traditional Chinese Medicine Hospital,No.2021-07(to FB)Sanming Project of Medicine in Shenzhen,No.SZZYSM 202111011(to XDQ and FB)+1 种基金Key Discipline Established by Zhejiang Province,Jiaxing City Jointly-Pain Medicine,No.2019-ss-ttyx(to LSX)Jiaxing Key Laboratory of Neurology and Pain Medicine,No.[2014]81(to LSX)。
文摘Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis.
基金Supported by National Natural Science Foundation of China,No.82260211Key Research and Development Project in Jiangxi Province,No.20203BBG73058Chinese Medicine Science and Technology Project in Jiangxi Province,No.2020A0166.
文摘BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its damage is an important indicator of DR.Receptor for activated C kinase 1(RACK1)activates protein kinase C-ε(PKC-ε)to promote the generation of reactive oxygen species(ROS)in RPE cells,leading to apoptosis.Therefore,we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS,thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR.AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR.METHODS In this study,Sprague-Dawley rats and adult RPE cell line-19(ARPE-19)cells were used as in vivo and in vitro models,respectively,to explore the role of RACK1 in mediating PKC-εin early DR.Furthermore,the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model.RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and upregulated expression of RACK1 and PKC-εproteins in RPE cells following a prolonged modeling.Similarly,ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε,accompanied by an increases in ROS production,apoptosis rate,and monolayer permeability.However,silencing RACK1 significantly downregulated the expression of PKC-εand ROS,reduced cell apoptosis and permeability,and protected barrier function.CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFD1200503)Jiangsu Agriculture Science and Technology Innovation Fund[Grant Nos.SCX(22)3215],Fundamental Research Funds for the Central Universities(Grant No.JCQY201901)the Earmarked Fund for China Agriculture Research System(Grant No.CARS-28).
文摘The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Black spot is one of the most serious fungal diseases of pear which is an important part of the fruit industry in China.The MAPKK genes have been identified in many plants,however,none has been reported in pear(Pyrus bretschneideri).In order to explore whether MAPK gene of pear is related to black spot disease,we designed this experiment.The present study investigated eight putative PbrMAPKK genes obtained from the Chinese white pear genome.The phylogenetic analysis revealed that PbrMAPKK genes were divided into A,B,C,and D groups.These PbrMAPKK genes are randomly distributed on 7 out of 17 chromosomes and mainly originated from the whole-genome duplication(WGD)event.The expression analysis of PbrMAPKK genes in seven pear tissues and the leaves of susceptible and resistant varieties after Alternaria alternata infection by quantitative real-time PCR(qRT-PCR)identified seven candidate genes associated with resistance.Furthermore,virus-induced gene silencing(VIGS)indicated that PbrMAPKK6 gene enhanced resistance to pear black spot disease in pear.
基金funded by the Natural Science Foundation of Anhui Province,China(2008085QC158)the University Natural Science Research Project of Anhui Province(KJ2019A0165)。
文摘In mammals,microRNAs(miRNAs)play key roles in multiple biological processes by regulating the expression of target genes.Studies have found that the levels of miR-370-5p expression differ significantly in the skins of sheep with different hair colors;however,its function remains unclear.In this study,we investigated the roles of miR-370-5p in sheep melanocytes and found that the overexpression of miR-370-5p significantly inhibited cell proliferation(P<0.01),tyrosinase activity(P=0.001)and significantly reduced(P<0.001)melanin production.Functional prediction revealed that the 3′-untranslated region(UTR)of MAP3K8 has a putative miR-370-5p binding site,and the interaction between these two molecules was confirmed using luciferase reporter assays.In situ hybridization assays revealed that MAP3K8 is expressed in the cytoplasm of melanocytes.The results of quantitative RT-PCR and Western blotting analyses revealed that overexpression of miR-370-5p in melanocytes significantly inhibits(P<0.01)MAP3K8 expression via direct targeting of its 3′UTR.Inhibition of MAP3K8 expression by siRNA-MAP3K8 transfection induced a significant inhibition(P<0.01)of melanocyte proliferation and significant reduction(P<0.001)in melanin production,which is consistent with our observations for miR-370-5p.Target gene rescue experiments indicated that the expression of MAP3K8 in melanocytes co-transfected with miR-370-5p and MAP3K8-cDNA(containing sites for the targeted binding to miR-370-5p)was significantly rescued(P≤0.001),which subsequently promoted significant increases in cell proliferation(P<0.001)and melanin production(P<0.01).Collectively,these findings indicate that miR-370-5p plays a functional role in inhibiting sheep melanocyte proliferation and melanogenesis by downregulating the expression of MAP3K8.