BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorecta...BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.展开更多
BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mai...BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment fo...BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment for advanced HCC,but resistance is common.The Rho GTPase family member Rho GTPase activating protein 12(ARHGAP12),which regulates cell adhesion and invasion,is a potential therapeutic target for overcoming TKI resistance in HCC.However,no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported.AIM To unveil the expression of ARHGAP12 in HCC,its role in TKI resistance and its potential associated pathways.METHODS This study used single-cell RNA sequencing(scRNA-seq)to evaluate ARHGAP12 mRNA levels and explored its mechanisms through enrichment analysis.CellChat was used to investigate focal adhesion(FA)pathway regulation.We integrated bulk RNA data(RNA-seq and microarray),immunohistochemistry and proteomics to analyze ARHGAP12 mRNA and protein levels,correlating with clinical outcomes.We assessed ARHGAP12 expression in TKI-resistant HCC,integrated conventional HCC to explore its mechanism,identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy.RESULTS ARHGAP12 mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA.In malignant hepatocytes in high-score FA groups,MDK-[integrin alpha 6(ITGA6)+integrinβ-1(ITGB1)]showed specificity in ligand-receptor interactions.ARHGAP12 mRNA and protein were upregulated in bulk RNA,immunohistochemistry and proteomics,and higher expression was associated with a worse prognosis.ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway.ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA.High expression of ARHGAP12 was associated with adverse reactions to sorafenib,cabozantinib and regorafenib,but not to immunotherapy.CONCLUSION ARHGAP12 expression is elevated in HCC and TKI-resistant HCC,and its regulatory role in FA may underlie the TKI-resistant phenotype.展开更多
SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterize...SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat.展开更多
We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's d...We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's disease.In addition,depression is a risk factor for developing Alzheimer's disease,as well as an early clinical manifestation of Alzheimer's disease.Meanwhile,cognitive dysfunction is a distinctive feature of major depressive disorder.Therefore,DAPK1 may be related to cognitive dysfunction in major depressive disorder.In this study,we established a mouse model of major depressive disorder by housing mice individually and exposing them to chronic,mild,unpredictable stressors.We found that DAPK1 and tau protein levels were increased in the hippocampal CA3 area,and tau was hyperphosphorylated at Thr231,Ser262,and Ser396 in these mice.Furthermore,DAPK1 shifted from axonal expression to overexpression on the cell membrane.Exercise and treatment with the antidepressant drug citalopram decreased DAPK1 expression and tau protein phosphorylation in hippocampal tissue and improved both depressive symptoms and cognitive dysfunction.These results indicate that DAPK1 may be a potential reason and therapeutic target of cognitive dysfunction in major depressive disorder.展开更多
Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of a...Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury.展开更多
BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its d...BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its damage is an important indicator of DR.Receptor for activated C kinase 1(RACK1)activates protein kinase C-ε(PKC-ε)to promote the generation of reactive oxygen species(ROS)in RPE cells,leading to apoptosis.Therefore,we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS,thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR.AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR.METHODS In this study,Sprague-Dawley rats and adult RPE cell line-19(ARPE-19)cells were used as in vivo and in vitro models,respectively,to explore the role of RACK1 in mediating PKC-εin early DR.Furthermore,the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model.RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and upregulated expression of RACK1 and PKC-εproteins in RPE cells following a prolonged modeling.Similarly,ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε,accompanied by an increases in ROS production,apoptosis rate,and monolayer permeability.However,silencing RACK1 significantly downregulated the expression of PKC-εand ROS,reduced cell apoptosis and permeability,and protected barrier function.CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.展开更多
Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB le...Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis.展开更多
Objective:To identify the role of protein kinase in male reproduction in animal models and human spermatogenic function.Methods:This study assessed the protein kinase of male reproduction in animal models and human us...Objective:To identify the role of protein kinase in male reproduction in animal models and human spermatogenic function.Methods:This study assessed the protein kinase of male reproduction in animal models and human using different reviewed paper indexed in PubMed,Science Direct,EBSCO,Scopus,Cochrane Library,Sage Journals,and Google Scholar.Data were charted based on author,year of publication published between 1893 and 2023,country,purpose,data collection,key findings,and research focus/domain.Results:The MAPK pathway contributed to the growth,maturation,and functionality of male germ cells.We also found out that certain influencing factors categorized into hormonal/non hormonal factors and chemotoxicant,as well as heat stress expressed an inhibitory mechanism on protein kinase,thus affecting spermatogenic functions and maintenance/remodeling of the blood testis barrier,as well as the physiology of the Sertoli cells necessary for nutritional support of spermatogenesis.However,activating protein kinases pathway like the mTOR pathway as well as increased expression of peroxiredoxin-4 and L-carnitine mediated protein kinases may be useful for treating or managing male reproductive dysfunction.Conclusions:Protein kinase plays an important role in spermatogenic functions and blood testis remodeling in animal and human.Its assessment provides essential information that can guide treatment strategies aimed at improving male reproductive potential.Taken together,these recent advances highlight a future therapeutic intervention in assessing male reproductive potential.It might also be possible to look at potential targets for male contraceptives in the MAPK pathway.展开更多
The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Blac...The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Black spot is one of the most serious fungal diseases of pear which is an important part of the fruit industry in China.The MAPKK genes have been identified in many plants,however,none has been reported in pear(Pyrus bretschneideri).In order to explore whether MAPK gene of pear is related to black spot disease,we designed this experiment.The present study investigated eight putative PbrMAPKK genes obtained from the Chinese white pear genome.The phylogenetic analysis revealed that PbrMAPKK genes were divided into A,B,C,and D groups.These PbrMAPKK genes are randomly distributed on 7 out of 17 chromosomes and mainly originated from the whole-genome duplication(WGD)event.The expression analysis of PbrMAPKK genes in seven pear tissues and the leaves of susceptible and resistant varieties after Alternaria alternata infection by quantitative real-time PCR(qRT-PCR)identified seven candidate genes associated with resistance.Furthermore,virus-induced gene silencing(VIGS)indicated that PbrMAPKK6 gene enhanced resistance to pear black spot disease in pear.展开更多
BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM...BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM To elucidate the role played by microRNA-298(miR-298)in CRC radio-resistance.METHODS To establish a radio-resistant CRC cell line,HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period.The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR,and protein expression determination was realized through Western blotting.Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay.Radio-induced apoptosis was discerned through flow cytometry analysis.RESULTS We observed a marked upregulation of miR-298 in radio-resistant CRC cells.MiR-298 emerged as a key determinant of cell survival following radiation exposure,as its overexpression led to a notable reduction in radiation-induced apoptosis.Intriguingly,miR-298 expression exhibited a strong correlation with CRC cell viability.Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A(DYRK1A)as miR-298’s direct target.CONCLUSION Taken together,our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation,thereby positioning miR-298 as a promising candidate for mitigating radioresistance in CRC.展开更多
In mammals,microRNAs(miRNAs)play key roles in multiple biological processes by regulating the expression of target genes.Studies have found that the levels of miR-370-5p expression differ significantly in the skins of...In mammals,microRNAs(miRNAs)play key roles in multiple biological processes by regulating the expression of target genes.Studies have found that the levels of miR-370-5p expression differ significantly in the skins of sheep with different hair colors;however,its function remains unclear.In this study,we investigated the roles of miR-370-5p in sheep melanocytes and found that the overexpression of miR-370-5p significantly inhibited cell proliferation(P<0.01),tyrosinase activity(P=0.001)and significantly reduced(P<0.001)melanin production.Functional prediction revealed that the 3′-untranslated region(UTR)of MAP3K8 has a putative miR-370-5p binding site,and the interaction between these two molecules was confirmed using luciferase reporter assays.In situ hybridization assays revealed that MAP3K8 is expressed in the cytoplasm of melanocytes.The results of quantitative RT-PCR and Western blotting analyses revealed that overexpression of miR-370-5p in melanocytes significantly inhibits(P<0.01)MAP3K8 expression via direct targeting of its 3′UTR.Inhibition of MAP3K8 expression by siRNA-MAP3K8 transfection induced a significant inhibition(P<0.01)of melanocyte proliferation and significant reduction(P<0.001)in melanin production,which is consistent with our observations for miR-370-5p.Target gene rescue experiments indicated that the expression of MAP3K8 in melanocytes co-transfected with miR-370-5p and MAP3K8-cDNA(containing sites for the targeted binding to miR-370-5p)was significantly rescued(P≤0.001),which subsequently promoted significant increases in cell proliferation(P<0.001)and melanin production(P<0.01).Collectively,these findings indicate that miR-370-5p plays a functional role in inhibiting sheep melanocyte proliferation and melanogenesis by downregulating the expression of MAP3K8.展开更多
BACKGROUND Gastrointestinal stromal tumors(GISTs)are the most common mesenchymal tumors of the gastrointestinal tract.Tyrosine kinase inhibitors,such as imatinib,have been used as first-line therapy for the treatment ...BACKGROUND Gastrointestinal stromal tumors(GISTs)are the most common mesenchymal tumors of the gastrointestinal tract.Tyrosine kinase inhibitors,such as imatinib,have been used as first-line therapy for the treatment of GISTs.Although these drugs have achieved considerable efficacy in some patients,reports of resistance and recurrence have emerged.Extracellular signal-regulated kinase 1/2(ERK1/2)protein,as a member of the mitogen-activated protein kinase(MAPK)family,is a core molecule of this signaling pathway.Nowadays,research reports on the important clinical and prognostic value of phosphorylated-ERK(P-ERK)and phosphorylated-MAPK/ERK kinase(P-MEK)proteins closely related to raf kinase inhibitor protein(RKIP)have gradually emerged in digestive tract tumors such as gastric cancer,colon cancer,and pancreatic cancer.However,literature on the expression of these downstream proteins combined with RKIP in GIST is scarce.This study will focus on this aspect and search for answers to the problem.AIM To detect the expression of RKIP,P-ERK,and P-MEK protein in GIST and to analyze their relationship with clinicopathological characteristics and prognosis of this disease.Try to establish a new prognosis evaluation model using RKIP and PERK in combination with analysis and its prognosis evaluation efficacy.METHODS The research object of our experiment was 66 pathologically diagnosed GIST patients with complete clinical and follow-up information.These patients received surgical treatment at China Medical University Affiliated Hospital from January 2015 to January 2020.Immunohistochemical method was used to detect the expression of RKIP,PERK,and P-MEK proteins in GIST tissue samples from these patients.Kaplan-Meier method was used to calculate the survival rate of 63 patients with complete follow-up data.A Nomogram was used to represent the new prognostic evaluation model.The Cox multivariate regression analysis was conducted separately for each set of risk evaluation factors,based on two risk classification systems[the new risk grade model vs the modified National Institutes of Health(NIH)2008 risk classification system].Receiver operating characteristic(ROC)curves were used for evaluating the accuracy and efficiency of the two prognostic evaluation systems.RESULTS In GIST tissues,RKIP protein showed positive expression in the cytoplasm and cell membrane,appearing as brownish-yellow or brown granules.The expression of RKIP was related to GIST tumor size,NIH grade,and mucosal invasion.P-ERK protein exhibited heterogeneous distribution in GIST cells,mainly in the cytoplasm,with occasional presence in the nucleus,and appeared as brownish-yellow granules,and the expression of P-ERK protein was associated with GIST tumor size,mitotic count,mucosal invasion,and NIH grade.Meanwhile,RKIP protein expression was negatively correlated with P-ERK expression.The results in COX multivariate regression analysis showed that RKIP protein expression was not an independent risk factor for tumor prognosis.However,RKIP combined with P-ERK protein expression were identified as independent risk factors for prognosis with statistical significance.Furthermore,we establish a new prognosis evaluation model using RKIP and P-ERK in combination and obtained the nomogram of the new prognosis evaluation model.ROC curve analysis also showed that the new evaluation model had better prognostic performance than the modified NIH 2008 risk classification system.CONCLUSION Our experimental results showed that the expression of RKIP and P-ERK proteins in GIST was associated with tumor size,NIH 2008 staging,and tumor invasion,and P-ERK expression was also related to mitotic count.The expression of the two proteins had a certain negative correlation.The combined expression of RKIP and P-ERK proteins can serve as an independent risk factor for predicting the prognosis of GIST patients.The new risk assessment model incorporating RKIP and P-ERK has superior evaluation efficacy and is worth further practical application to validate.展开更多
BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treat...BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance.While S-phase kinase associated protein 2(Skp2)overexpression has been implicated in the malignant progression of GC,its role in regulating trastuzumab resistance in this context remains uncertain.Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products,there has been a lack of successful commercialization of drugs specifically targeting Skp2.AIM To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment.METHODS Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells.Q-PCR,western blot,and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression.A cell counting kit-8 assay,flow cytometry,a amplex red glucose/glucose oxidase assay kit,and a lactate assay kit were utilized to measure the proliferation,apoptosis,and glycolytic activity of GC cells in vitro.A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo.RESULTS The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab.Thioridazine demonstrated the ability to directly bind to Skp2,resulting in a reduction in Skp2 expression at both the transcriptional and translational levels.Moreover,thioridazine effectively inhibited cell proliferation,exhibited antiapoptotic properties,and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways.The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo,surpassing the efficacy of either monotherapy.CONCLUSION Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance,particularly when used in conjunction with lapatinib.This compound has potential benefits for patients with Skp2-proficient tumors.展开更多
Objective:Deleted in liver cancer 1(DLC1)is a GTPase-activating protein that is reported as a suppressor in certain human cancers.However,the detailed biological function of DLC1 is still unclear in human prostate can...Objective:Deleted in liver cancer 1(DLC1)is a GTPase-activating protein that is reported as a suppressor in certain human cancers.However,the detailed biological function of DLC1 is still unclear in human prostate cancer(PCa).In the present study,we aimed to explore the function of DLC1 in PCa cells.Methods:Silencing and overexpression of DLC1 were induced in an androgen-sensitive PCa cell line(LNCaP)using RNA interference and lentiviral vector transduction.The Cell Counting Kit-8 assay was performed to determine cell proliferation.The cell cycle was examined by performing a propidium iodide staining assay.Results:Our results indicated that DLC1 overexpression markedly suppressed the proliferation and cell cycle progression of LNCaP cells.Moreover,DLC1 expression was negatively correlated with Rho-associated protein kinase(ROCK)expression in LNCaP cells.Importantly,this study showed that the ROCK inhibitor Y27632 restored the function of DLC1 in LNCaP cells and reduced the tumorigenicity of LNCaP cells in vivo.Conclusion:Our results indicated that DLC1 overexpression markedly suppressed the proliferation and cell cycle progression of PCa cells and negatively correlated with ROCK expression in PCa cells and tissue.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect...BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.展开更多
Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory p...Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.展开更多
Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine ...Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.展开更多
To isolate genes related to resistance to Erysiphe graminis DC. ex Merat f. sp. tritici Em. Marchal in wheat (Triticum aestivum L.), differential display analysis was conducted for mRNA extracted from the seedlings of...To isolate genes related to resistance to Erysiphe graminis DC. ex Merat f. sp. tritici Em. Marchal in wheat (Triticum aestivum L.), differential display analysis was conducted for mRNA extracted from the seedlings of the wheat-Haynaldia villosa 6VS/6AL translocation line 92RI37 that contains the powdery mildew resistance gene Pm21. A full-length cDNA named TaPK1 was isolated. BLAST analysis revealed that it was significantly homologous to Glycine max (L.) Merr. protein kinase (GmPK6) cDNA. TaPK1 encodes a 416 amino acid long polypeptide, which belongs to serine/threonine protein kinase family, also has tyrosine kinase specificity. TaPK1 is a novel protein kinase from wheat.展开更多
基金Supported by National Natural Science Foundation of China,No.81760516Natural Science Foundation of Guangxi,China,No.2019GXNSFAA185030+1 种基金Self-Financed Scientific Research Projects of Guangxi Zhuang Autonomous Region Health and Family Planning Commission,China,No.Z20181003Guangxi Medical University Youth Science Fund Project,China,No.GXMUYSF202221.
文摘BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.
基金Liaoning Provincial Science and Technology Department Project,No.2023JH2/101700149Open Fund Project of Liaoning University of Traditional Chinese Medicine,No.zyzx2205.
文摘BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.
基金Supported by National Natural Science Foundation of China,No.82260581Guangxi Zhuang Autonomous Region Health Committee Scientific Research Project,No.Z20201147+3 种基金Guangxi Medical University Education and Teaching Reform Project,No.2021XJGA02Undergraduate Teaching Reform Project of Guangxi Higher Education,No.2023JGB163Guangxi Medical University Teacher Teaching Ability Development Project,No.2202JFA20China Undergraduate Innovation and Entrepreneurship Training Program,No.S202310598170.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment for advanced HCC,but resistance is common.The Rho GTPase family member Rho GTPase activating protein 12(ARHGAP12),which regulates cell adhesion and invasion,is a potential therapeutic target for overcoming TKI resistance in HCC.However,no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported.AIM To unveil the expression of ARHGAP12 in HCC,its role in TKI resistance and its potential associated pathways.METHODS This study used single-cell RNA sequencing(scRNA-seq)to evaluate ARHGAP12 mRNA levels and explored its mechanisms through enrichment analysis.CellChat was used to investigate focal adhesion(FA)pathway regulation.We integrated bulk RNA data(RNA-seq and microarray),immunohistochemistry and proteomics to analyze ARHGAP12 mRNA and protein levels,correlating with clinical outcomes.We assessed ARHGAP12 expression in TKI-resistant HCC,integrated conventional HCC to explore its mechanism,identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy.RESULTS ARHGAP12 mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA.In malignant hepatocytes in high-score FA groups,MDK-[integrin alpha 6(ITGA6)+integrinβ-1(ITGB1)]showed specificity in ligand-receptor interactions.ARHGAP12 mRNA and protein were upregulated in bulk RNA,immunohistochemistry and proteomics,and higher expression was associated with a worse prognosis.ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway.ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA.High expression of ARHGAP12 was associated with adverse reactions to sorafenib,cabozantinib and regorafenib,but not to immunotherapy.CONCLUSION ARHGAP12 expression is elevated in HCC and TKI-resistant HCC,and its regulatory role in FA may underlie the TKI-resistant phenotype.
基金supported by National Key Research and Development Program of China(2022YFD1200202)State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2022ZZ-7)Graduate Student Innovation Ability Training Funding Project of Hebei Province(CXZZBS2023073)。
文摘SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat.
基金supported by the Department of Science and Technology of Henan Province,Nos.192102310084(to HCZ),222102310143(to DXD)the Youth Fund of School of Basic Medical Sciences of Zhengzhou University,No.JCYXY2017-YQ-07(to DXD)。
文摘We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's disease.In addition,depression is a risk factor for developing Alzheimer's disease,as well as an early clinical manifestation of Alzheimer's disease.Meanwhile,cognitive dysfunction is a distinctive feature of major depressive disorder.Therefore,DAPK1 may be related to cognitive dysfunction in major depressive disorder.In this study,we established a mouse model of major depressive disorder by housing mice individually and exposing them to chronic,mild,unpredictable stressors.We found that DAPK1 and tau protein levels were increased in the hippocampal CA3 area,and tau was hyperphosphorylated at Thr231,Ser262,and Ser396 in these mice.Furthermore,DAPK1 shifted from axonal expression to overexpression on the cell membrane.Exercise and treatment with the antidepressant drug citalopram decreased DAPK1 expression and tau protein phosphorylation in hippocampal tissue and improved both depressive symptoms and cognitive dysfunction.These results indicate that DAPK1 may be a potential reason and therapeutic target of cognitive dysfunction in major depressive disorder.
基金supported by the Natural Nature Science Foundation of China,Nos.82030071,81874004the Science and Technology Major Project of Changsha,No.kh2103008(all to JZH).
文摘Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury.
基金Supported by National Natural Science Foundation of China,No.82260211Key Research and Development Project in Jiangxi Province,No.20203BBG73058Chinese Medicine Science and Technology Project in Jiangxi Province,No.2020A0166.
文摘BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its damage is an important indicator of DR.Receptor for activated C kinase 1(RACK1)activates protein kinase C-ε(PKC-ε)to promote the generation of reactive oxygen species(ROS)in RPE cells,leading to apoptosis.Therefore,we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS,thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR.AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR.METHODS In this study,Sprague-Dawley rats and adult RPE cell line-19(ARPE-19)cells were used as in vivo and in vitro models,respectively,to explore the role of RACK1 in mediating PKC-εin early DR.Furthermore,the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model.RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and upregulated expression of RACK1 and PKC-εproteins in RPE cells following a prolonged modeling.Similarly,ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε,accompanied by an increases in ROS production,apoptosis rate,and monolayer permeability.However,silencing RACK1 significantly downregulated the expression of PKC-εand ROS,reduced cell apoptosis and permeability,and protected barrier function.CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.
基金supported by Research Start-up Funding of Shenzhen Traditional Chinese Medicine Hospital,No.2021-07(to FB)Sanming Project of Medicine in Shenzhen,No.SZZYSM 202111011(to XDQ and FB)+1 种基金Key Discipline Established by Zhejiang Province,Jiaxing City Jointly-Pain Medicine,No.2019-ss-ttyx(to LSX)Jiaxing Key Laboratory of Neurology and Pain Medicine,No.[2014]81(to LSX)。
文摘Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis.
文摘Objective:To identify the role of protein kinase in male reproduction in animal models and human spermatogenic function.Methods:This study assessed the protein kinase of male reproduction in animal models and human using different reviewed paper indexed in PubMed,Science Direct,EBSCO,Scopus,Cochrane Library,Sage Journals,and Google Scholar.Data were charted based on author,year of publication published between 1893 and 2023,country,purpose,data collection,key findings,and research focus/domain.Results:The MAPK pathway contributed to the growth,maturation,and functionality of male germ cells.We also found out that certain influencing factors categorized into hormonal/non hormonal factors and chemotoxicant,as well as heat stress expressed an inhibitory mechanism on protein kinase,thus affecting spermatogenic functions and maintenance/remodeling of the blood testis barrier,as well as the physiology of the Sertoli cells necessary for nutritional support of spermatogenesis.However,activating protein kinases pathway like the mTOR pathway as well as increased expression of peroxiredoxin-4 and L-carnitine mediated protein kinases may be useful for treating or managing male reproductive dysfunction.Conclusions:Protein kinase plays an important role in spermatogenic functions and blood testis remodeling in animal and human.Its assessment provides essential information that can guide treatment strategies aimed at improving male reproductive potential.Taken together,these recent advances highlight a future therapeutic intervention in assessing male reproductive potential.It might also be possible to look at potential targets for male contraceptives in the MAPK pathway.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFD1200503)Jiangsu Agriculture Science and Technology Innovation Fund[Grant Nos.SCX(22)3215],Fundamental Research Funds for the Central Universities(Grant No.JCQY201901)the Earmarked Fund for China Agriculture Research System(Grant No.CARS-28).
文摘The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Black spot is one of the most serious fungal diseases of pear which is an important part of the fruit industry in China.The MAPKK genes have been identified in many plants,however,none has been reported in pear(Pyrus bretschneideri).In order to explore whether MAPK gene of pear is related to black spot disease,we designed this experiment.The present study investigated eight putative PbrMAPKK genes obtained from the Chinese white pear genome.The phylogenetic analysis revealed that PbrMAPKK genes were divided into A,B,C,and D groups.These PbrMAPKK genes are randomly distributed on 7 out of 17 chromosomes and mainly originated from the whole-genome duplication(WGD)event.The expression analysis of PbrMAPKK genes in seven pear tissues and the leaves of susceptible and resistant varieties after Alternaria alternata infection by quantitative real-time PCR(qRT-PCR)identified seven candidate genes associated with resistance.Furthermore,virus-induced gene silencing(VIGS)indicated that PbrMAPKK6 gene enhanced resistance to pear black spot disease in pear.
基金This study was reviewed and approved by the Experimental Animal Ethics Committee of the First Affiliated Hospital of Guangxi Medical University(Approval No.2023-E386-01).
文摘BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM To elucidate the role played by microRNA-298(miR-298)in CRC radio-resistance.METHODS To establish a radio-resistant CRC cell line,HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period.The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR,and protein expression determination was realized through Western blotting.Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay.Radio-induced apoptosis was discerned through flow cytometry analysis.RESULTS We observed a marked upregulation of miR-298 in radio-resistant CRC cells.MiR-298 emerged as a key determinant of cell survival following radiation exposure,as its overexpression led to a notable reduction in radiation-induced apoptosis.Intriguingly,miR-298 expression exhibited a strong correlation with CRC cell viability.Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A(DYRK1A)as miR-298’s direct target.CONCLUSION Taken together,our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation,thereby positioning miR-298 as a promising candidate for mitigating radioresistance in CRC.
基金funded by the Natural Science Foundation of Anhui Province,China(2008085QC158)the University Natural Science Research Project of Anhui Province(KJ2019A0165)。
文摘In mammals,microRNAs(miRNAs)play key roles in multiple biological processes by regulating the expression of target genes.Studies have found that the levels of miR-370-5p expression differ significantly in the skins of sheep with different hair colors;however,its function remains unclear.In this study,we investigated the roles of miR-370-5p in sheep melanocytes and found that the overexpression of miR-370-5p significantly inhibited cell proliferation(P<0.01),tyrosinase activity(P=0.001)and significantly reduced(P<0.001)melanin production.Functional prediction revealed that the 3′-untranslated region(UTR)of MAP3K8 has a putative miR-370-5p binding site,and the interaction between these two molecules was confirmed using luciferase reporter assays.In situ hybridization assays revealed that MAP3K8 is expressed in the cytoplasm of melanocytes.The results of quantitative RT-PCR and Western blotting analyses revealed that overexpression of miR-370-5p in melanocytes significantly inhibits(P<0.01)MAP3K8 expression via direct targeting of its 3′UTR.Inhibition of MAP3K8 expression by siRNA-MAP3K8 transfection induced a significant inhibition(P<0.01)of melanocyte proliferation and significant reduction(P<0.001)in melanin production,which is consistent with our observations for miR-370-5p.Target gene rescue experiments indicated that the expression of MAP3K8 in melanocytes co-transfected with miR-370-5p and MAP3K8-cDNA(containing sites for the targeted binding to miR-370-5p)was significantly rescued(P≤0.001),which subsequently promoted significant increases in cell proliferation(P<0.001)and melanin production(P<0.01).Collectively,these findings indicate that miR-370-5p plays a functional role in inhibiting sheep melanocyte proliferation and melanogenesis by downregulating the expression of MAP3K8.
基金Natural Science Foundation of Liaoning Province,No.2020-MS-148。
文摘BACKGROUND Gastrointestinal stromal tumors(GISTs)are the most common mesenchymal tumors of the gastrointestinal tract.Tyrosine kinase inhibitors,such as imatinib,have been used as first-line therapy for the treatment of GISTs.Although these drugs have achieved considerable efficacy in some patients,reports of resistance and recurrence have emerged.Extracellular signal-regulated kinase 1/2(ERK1/2)protein,as a member of the mitogen-activated protein kinase(MAPK)family,is a core molecule of this signaling pathway.Nowadays,research reports on the important clinical and prognostic value of phosphorylated-ERK(P-ERK)and phosphorylated-MAPK/ERK kinase(P-MEK)proteins closely related to raf kinase inhibitor protein(RKIP)have gradually emerged in digestive tract tumors such as gastric cancer,colon cancer,and pancreatic cancer.However,literature on the expression of these downstream proteins combined with RKIP in GIST is scarce.This study will focus on this aspect and search for answers to the problem.AIM To detect the expression of RKIP,P-ERK,and P-MEK protein in GIST and to analyze their relationship with clinicopathological characteristics and prognosis of this disease.Try to establish a new prognosis evaluation model using RKIP and PERK in combination with analysis and its prognosis evaluation efficacy.METHODS The research object of our experiment was 66 pathologically diagnosed GIST patients with complete clinical and follow-up information.These patients received surgical treatment at China Medical University Affiliated Hospital from January 2015 to January 2020.Immunohistochemical method was used to detect the expression of RKIP,PERK,and P-MEK proteins in GIST tissue samples from these patients.Kaplan-Meier method was used to calculate the survival rate of 63 patients with complete follow-up data.A Nomogram was used to represent the new prognostic evaluation model.The Cox multivariate regression analysis was conducted separately for each set of risk evaluation factors,based on two risk classification systems[the new risk grade model vs the modified National Institutes of Health(NIH)2008 risk classification system].Receiver operating characteristic(ROC)curves were used for evaluating the accuracy and efficiency of the two prognostic evaluation systems.RESULTS In GIST tissues,RKIP protein showed positive expression in the cytoplasm and cell membrane,appearing as brownish-yellow or brown granules.The expression of RKIP was related to GIST tumor size,NIH grade,and mucosal invasion.P-ERK protein exhibited heterogeneous distribution in GIST cells,mainly in the cytoplasm,with occasional presence in the nucleus,and appeared as brownish-yellow granules,and the expression of P-ERK protein was associated with GIST tumor size,mitotic count,mucosal invasion,and NIH grade.Meanwhile,RKIP protein expression was negatively correlated with P-ERK expression.The results in COX multivariate regression analysis showed that RKIP protein expression was not an independent risk factor for tumor prognosis.However,RKIP combined with P-ERK protein expression were identified as independent risk factors for prognosis with statistical significance.Furthermore,we establish a new prognosis evaluation model using RKIP and P-ERK in combination and obtained the nomogram of the new prognosis evaluation model.ROC curve analysis also showed that the new evaluation model had better prognostic performance than the modified NIH 2008 risk classification system.CONCLUSION Our experimental results showed that the expression of RKIP and P-ERK proteins in GIST was associated with tumor size,NIH 2008 staging,and tumor invasion,and P-ERK expression was also related to mitotic count.The expression of the two proteins had a certain negative correlation.The combined expression of RKIP and P-ERK proteins can serve as an independent risk factor for predicting the prognosis of GIST patients.The new risk assessment model incorporating RKIP and P-ERK has superior evaluation efficacy and is worth further practical application to validate.
基金Supported by Youth Fund of National Natural Science Foundation of China,No.81803575,No.31902287Kaifeng Science and Technology Development Plan Project,No.2203008+2 种基金Key Specialized Research and Promotion Project of Henan Province in 2023,No.232102311205Henan Medical Science and Technology Research Program Project,No.LHGJ20210801College Students Innovation and Entrepreneurship Training Program of Henan University,No.20231022007.
文摘BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance.While S-phase kinase associated protein 2(Skp2)overexpression has been implicated in the malignant progression of GC,its role in regulating trastuzumab resistance in this context remains uncertain.Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products,there has been a lack of successful commercialization of drugs specifically targeting Skp2.AIM To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment.METHODS Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells.Q-PCR,western blot,and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression.A cell counting kit-8 assay,flow cytometry,a amplex red glucose/glucose oxidase assay kit,and a lactate assay kit were utilized to measure the proliferation,apoptosis,and glycolytic activity of GC cells in vitro.A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo.RESULTS The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab.Thioridazine demonstrated the ability to directly bind to Skp2,resulting in a reduction in Skp2 expression at both the transcriptional and translational levels.Moreover,thioridazine effectively inhibited cell proliferation,exhibited antiapoptotic properties,and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways.The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo,surpassing the efficacy of either monotherapy.CONCLUSION Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance,particularly when used in conjunction with lapatinib.This compound has potential benefits for patients with Skp2-proficient tumors.
基金This study was supported by the Key Scientific Research Project of Shanghai Municipal Commission of Health and Family Planning(No.201640014)the project of Natural Science Foundation of Jiangxi(No.20171BAB205019)the Special Diseases Program of Pudong New Area Health System(No.PWZzb2017-06).
文摘Objective:Deleted in liver cancer 1(DLC1)is a GTPase-activating protein that is reported as a suppressor in certain human cancers.However,the detailed biological function of DLC1 is still unclear in human prostate cancer(PCa).In the present study,we aimed to explore the function of DLC1 in PCa cells.Methods:Silencing and overexpression of DLC1 were induced in an androgen-sensitive PCa cell line(LNCaP)using RNA interference and lentiviral vector transduction.The Cell Counting Kit-8 assay was performed to determine cell proliferation.The cell cycle was examined by performing a propidium iodide staining assay.Results:Our results indicated that DLC1 overexpression markedly suppressed the proliferation and cell cycle progression of LNCaP cells.Moreover,DLC1 expression was negatively correlated with Rho-associated protein kinase(ROCK)expression in LNCaP cells.Importantly,this study showed that the ROCK inhibitor Y27632 restored the function of DLC1 in LNCaP cells and reduced the tumorigenicity of LNCaP cells in vivo.Conclusion:Our results indicated that DLC1 overexpression markedly suppressed the proliferation and cell cycle progression of PCa cells and negatively correlated with ROCK expression in PCa cells and tissue.
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.
基金supported by the National Natural Science Foundation of ChinaNos.81971047 (to WTL) and 82073910 (to XFW)+2 种基金the Natural Science Foundation of Jiangsu Province,No.BK20191253 (to XFW)Key R&D Program (Social Development) Project of Jiangsu Province,No.BE2019 732 (to WTL)Jiangsu Province Hospital (the First Affiliated Hospital of Nanjing Medical University) Clinical Capacity Enhancement Project,No.JSPH-511B2018-8 (to YBP)。
文摘Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.
文摘Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.
文摘To isolate genes related to resistance to Erysiphe graminis DC. ex Merat f. sp. tritici Em. Marchal in wheat (Triticum aestivum L.), differential display analysis was conducted for mRNA extracted from the seedlings of the wheat-Haynaldia villosa 6VS/6AL translocation line 92RI37 that contains the powdery mildew resistance gene Pm21. A full-length cDNA named TaPK1 was isolated. BLAST analysis revealed that it was significantly homologous to Glycine max (L.) Merr. protein kinase (GmPK6) cDNA. TaPK1 encodes a 416 amino acid long polypeptide, which belongs to serine/threonine protein kinase family, also has tyrosine kinase specificity. TaPK1 is a novel protein kinase from wheat.