BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mai...BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.展开更多
Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell diff...Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.展开更多
BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes criti...BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy.Sodiumglucose cotransporter 2 inhibitors such as dapagliflozin,which are acclaimed for their efficacy in diabetes management,may influence macrophage polarization,thereby ameliorating diabetic nephropathy.This investigation delves into these mechanistic pathways,aiming to elucidate novel therapeutic strategies for diabetes.AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin.Concurrently,the human monocyte cell line cells were used for in vitro studies.Macrophage viability was assessed in a cell counting kit 8 assay,whereas apoptosis was evaluated by Annexin V/propidium iodide staining.Protein expression was examined through western blotting,and the expression levels of macrophage M1 surface immunosorbent assay,and quantitative real-time polymerase chain reaction analyses.RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice,evidenced by the downregulation of proapoptotic genes(Caspase 3),inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-α,and IL-1β],and M1 surface markers(inducible nitric oxide synthase,and cluster of differentiation 86),as well as the upregulation of the antiapoptotic gene BCL2.Moreover,dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway(PI3K,AKT,phosphorylated protein kinase B).These observations were corroborated in vitro,where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P,an activator of the PI3K/AKT signaling pathway.CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype,thereby mitigating inflammation and promoting macrophage apoptosis.These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect...BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.展开更多
Objective:The aim of the study was to investigate the effect of c-Jun N-terminal protein kinase(JNK) signaling pathway on influencing the sensitivity to radiotherapy of human nasopharyngeal carcinoma CNE cells.Methods...Objective:The aim of the study was to investigate the effect of c-Jun N-terminal protein kinase(JNK) signaling pathway on influencing the sensitivity to radiotherapy of human nasopharyngeal carcinoma CNE cells.Methods:Human nasopharyngeal carcinoma CNE multicellular spheroids(MCS) were constructed with three dimensional cell culture methods.Western blot was employed to analyze the activity of JNK signaling pathway in MCS after X-ray irradiation,and the expression of caspase-3 protein before and after using SP600125(a special inhibitor of JNK).X-ray induced cell apoptosis in MCS before and after treated with SP600125 were detected by TUNEL.Results:The level of JNK phosphorylation in MCS was a dynamic course after radiation,and there was a phosphorylation peaks at 2 h later,the apoptotic rate of MCS(P < 0.05) and the expression of caspase-3 protein(P < 0.05) were significantly increased after treated with SP600125.Conclusion:The transient activation of JNK played a important role in sensitivity to radiotherapy of CNE MCS via mediating survival signals,blocking this pathway accelerate cell apoptosis,which may be related to the increased expression of caspase-3.展开更多
Marsdenia tenacissima extract(MTE, trade name: Xiao-Ai-Ping injection) is an extract of a single Chinese plant medicine. It has been used for the treatment of cancer in China for decades, especially for esophageal can...Marsdenia tenacissima extract(MTE, trade name: Xiao-Ai-Ping injection) is an extract of a single Chinese plant medicine. It has been used for the treatment of cancer in China for decades, especially for esophageal cancer and other cancers in the digestive tract. In the present study, the potential mechanism for MTE's activity in esophageal cancer was explored. The effects of MTE on the proliferation of human esophageal cancer cells(KYSE150 and Eca-109) were investigated by the MTT assay, the Brd U(bromodeoxyuridine) incorporation immunofluorescence assay, and flow cytometric analysis. MTE inhibited cell proliferation through inducing G0/G1 cell cycle arrest in KYSE150 and Eca-109. Western blot analysis was employed to determine protein levels in the MTE treated cells. Compared with the control cells, the expression levels of the cell cycle regulatory proteins cyclin D1/D2/D3, cyclin E1, CDK2/4/6(CDK: cyclin dependent kinase), and p-Rb were decreased significantly in the cells treated with MTE at 40 mg·m L-1. In addition, MTE had an inhibitory effect on the MAPK(mitogen-activated protein kinase) signal transduction pathway, including ERK(extracellular signal-regulated kinase), JNK(c-Jun N-terminal kinase), and p38 MAPK. Moreover, MTE showed little additional effects on the regulation of cyclin D1/D3, CDK4/6, and p-Rb when the ERK pathway was already inhibited by the specific ERK inhibitor U0126. In conclusion, these data suggest that MTE inhibits human esophageal cancer cell proliferation through regulation of cell cycle regulatory proteins and the MAPK signaling pathways, which is probably mediated by the inhibition of ERK activation.展开更多
Background: Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the po...Background: Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism.Methods: We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditionsin vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway.Results: The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20vs. 0.44 ± 0.08,t = 6.67,P < 0.05), while the expression of p62 was decreased (0.77 ± 0.04vs. 0.95 ± 0.10,t = 2.90,P < 0.05), and PI3K (0.40 ± 0.06vs. 0.63 ± 0.10,t = 3.42,P < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02vs. 0.58 ± 0.03,t = 9.13,P < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14vs. 1.27 ± 0.20,t = 4.12,P < 0.05), up-regulated p62 expression (1.10 ± 0.20vs. 0.77 ± 0.04,t = 2.80,P < 0.05), and up-regulated PI3K (0.54 ± 0.05vs. 0.40 ± 0.06,t = 3.11,P < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05vs. 0.39 ± 0.02,t = 9.13,P < 0.05). A whole-genome microarray assay screened the differentially expressed geneHO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration ofHO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway.Conclusions: Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstancesin vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI.展开更多
Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. Howe...Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. However, NRTI drug therapy can cause peripheral neuropathic pain. In this study, we aimed to investigate the mechanisms ofrapamycin on the pain sensitization of model mice by in vivo experiments to explore the effect of mammalian target of rapamycin (mTOR) in the pathogenesis ofneuropathic pain caused by NRTIs. Methods: Male Kun Ming (KM) mice weighing 20-2 g were divided into control, 2 mg/kg rapamycin, 12 mg/kg stavudine, and CMC-Na groups. Drugs were orally administered to mice for 42 consecutive days. The von Frey filament detection and thermal pain tests were conducted on day 7, 14, 21, 28, 35, and 42 after drug administration. After the last behavioral tests, immunohistochemistry and western blotting assay were used for the measurement of mTOR and other biomarkers. Multivariate analysis of variance was used. Results: The beneficial effects ofrapamycin on neuropathic pain were attributed to a reduction in mammalian target of rapamycin sensitive complex 1 (mTORC1)-positive cells (70.80± 2.41 vs. 112.30 ± 5.66, F = 34.36, P 〈 0.01 ) and mTORC1 activity in the mouse spinal cord. Mechanistic studies revealed that Protein Kinase B (Akt)/mTOR signaling pathway blockade with rapamycin prevented the phosphorylation of mTORC1 in stavudine-intoxicated mice (0.72 ± 0.04 vs. 0.86 ± 0.03, F=4.24, P = 0.045), as well as decreased the expression of phospho-pTOS6K (0.47 ± 0.01 vs. 0.68 ± 0.03, F=6.01, P = 0.022) and phospho-4EBP1 (0.90 ± 0.04 vs. 0.94 ± 0.06, F= 0.28, P = 0.646). Conclusions: Taken together, these results suggest that stavudine elevates the expression and activity of mTORC1 in the spinal cord through activating the Akt/mTOR signaling pathway. The data also provide evidence that rapamycin might be useful for the treatment of peripheral neuropathic pain.展开更多
Background:In this research,we investigated the anti-cancer effect and the related mechanism of 2-[2-(4-chlorobenzamidomethylthio)-1,3,4-thiadiazol-5-yl]-1,2-benziselenazol-3(2H)-one compound(CTBO)and 2-[2-(4-nitroben...Background:In this research,we investigated the anti-cancer effect and the related mechanism of 2-[2-(4-chlorobenzamidomethylthio)-1,3,4-thiadiazol-5-yl]-1,2-benziselenazol-3(2H)-one compound(CTBO)and 2-[2-(4-nitrobenzamidomethylthio)-1,3,4-thiadiazol-5-yl]-1,2-benziselenazol-3(2H)-one compound(NTBO),which we synthesized in our lab previously.Methods:We applied the human lung cancer adenocarcinoma A549 cells to investigate the anti-tumor effect of CTBO and NTBO.The following methods were used in the research,including methylthiazolyldiphenyl-tetrazolium bromide assay,one-step terminal-deoxynucleotidyl transferase mediated nick end labeling,transcriptome sequencing analysis,quantitative reverse transcription polymerase chain reaction and western blot.Results:The results showed that both CTBO and NTBO significantly inhibited the A549 cells proliferation and induced the A549 cells apoptosis.The transcriptome sequencing analysis results illustrated that the two derivatives might exert the apoptotic effects through mitogen-activated protein kinase and tumor necrosis factor signaling pathways activation.Further,the western blot results suggested that CTBO and NTBO exerted anti-cancer effect through different molecular mechanisms.Conclusion:The results above provided fundamental research evidence for the further application of benziselenazolone derivatives in clinical.展开更多
BACKGROUND Colorectal cancer(CRC)ranks among the most prevalent malignant tumors globally.Recent reports suggest that Fusobacterium nucleatum(F.nucleatum)contributes to the initiation,progression,and prognosis of CRC....BACKGROUND Colorectal cancer(CRC)ranks among the most prevalent malignant tumors globally.Recent reports suggest that Fusobacterium nucleatum(F.nucleatum)contributes to the initiation,progression,and prognosis of CRC.Butyrate,a short-chain fatty acid derived from the bacterial fermentation of soluble dietary fiber,is known to inhibit various cancers.This study is designed to explore whether F.nucleatum influences the onset and progression of CRC by impacting the intestinal metabolite butyric acid.AIM To investigate the mechanism by which F.nucleatum affects CRC occurrence and development.METHODS Alterations in the gut microbiota of BALB/c mice were observed following the oral administration of F.nucleatum.Additionally,DLD-1 and HCT116 cell lines were exposed to sodium butyrate(NaB)and F.nucleatum in vitro to examine the effects on proliferative proteins and mitochondrial function.RESULTS Our research indicates that the prevalence of F.nucleatum in fecal samples from CRC patients is significantly greater than in healthy counterparts,while the prevalence of butyrate-producing bacteria is notably lower.In mice colonized with F.nucleatum,the population of butyrate-producing bacteria decreased,resulting in altered levels of butyric acid,a key intestinal metabolite of butyrate.Exposure to NaB can impair mitochondrial morphology and diminish mitochondrial membrane potential in DLD-1 and HCT116 CRC cells.Consequently,this leads to modulated production of adenosine triphosphate and reactive oxygen species,thereby inhibiting cancer cell prolif-eration.Additionally,NaB triggers the adenosine monophosphate-activated protein kinase(AMPK)signaling pathway,blocks the cell cycle in HCT116 and DLD-1 cells,and curtails the proliferation of CRC cells.The combined presence of F.nucleatum and NaB attenuated the effects of the latter.By employing small interfering RNA to suppress AMPK,it was demonstrated that AMPK is essential for NaB’s inhibition of CRC cell proliferation.CONCLUSION F.nucleatum can promote cancer progression through its inhibitory effect on butyric acid,via the AMPK signaling pathway.展开更多
Objective:To examine the therapeutic effect of Fangji Fuling Decoction(FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.Methods:A sepsis mouse model was constructe...Objective:To examine the therapeutic effect of Fangji Fuling Decoction(FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.Methods:A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide(LPS).RAW264.7 cells were stimulated by 250 ng/m L LPS to establish an in vitro cell model.Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis.Through ectopic expression and depletion experiments,the effect of FFD on multiple organ damage in septic mice,as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A(MAPK14/FOXO3A) signaling pathway,was analyzed.Results:FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro(P<0.05).Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis.As confirmed by in vitro cell experiments,FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation(P<0.05).Furthermore,FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice(P<0.05).Conclusion:FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.展开更多
BACKGROUND In China banxia xiexin decoction(BXD)has been used in treating gastric cancer(GC)for thousands of years and BXD has a good role in reversing GC histopathology,but its chemical composition and action mechani...BACKGROUND In China banxia xiexin decoction(BXD)has been used in treating gastric cancer(GC)for thousands of years and BXD has a good role in reversing GC histopathology,but its chemical composition and action mechanism are still unknown.AIM To investigate the mechanism of action of BXD against GC based on transcriptomics,network pharmacology,in vivo and in vitro experiments.METHODS The transplanted tumor model was prepared,and the nude mouse were pathologically examined after administration,and hematoxylin-eosin staining was performed.The active ingredients of BXD were quality controlled and identified using ultra-performance liquid chromatography tandem quadrupole electrostatic field orbitrap mass spectrometry(UPLC-Q-Orbitrap MS/MS),and traditional Chinese medicines systems pharmacology platform,drug bank and the Swiss target prediction platform to predict the relevant targets,the differentially expressed genes(DEGs)of GC were screened by RNA-seq sequencing,and the overlapping targets were analyzed to obtain the key targets and pathways.Cell Counting Kit-8,apoptosis assay,cell migration and Realtime fluorescence quantitative polymerase chain reaction were used for in vitro experiments.RESULTS All dosing groups inhibited the growth of transplanted tumors in laboratory-bred strain nude,with the capecitabine group and the BXD medium-dose group being the best.A total of 29 compounds and 859 potential targets in BXD were identified by UPLC-Q-Orbitrap MS/MS and network pharmacology,RNA-seq sequencing found 4767 GC DEGs,which were combined with network pharmacology and analyzed 246 potential therapeutic targets were obtained and pathway results showed that BXD may against GC through the Phosphoinositide 3-kinase(PI3K)/protein kinase B(AKt)signaling pathway.In vitro cellular experiments confirmed that BXDcontaining serum and LY294002 could inhibit the proliferation of GC cells,promote apoptosis,and inhibit the migration of GC cells by decreasing the expression of EGFR,PIK3CA,IL6,BCL2 and AKT1 in the PI3K-Akt pathway in MGC-803 expression.CONCLUSION BXD has the effect of inhibiting tumor growth rate and delaying the development of GC.Its mechanism of action may be related to the regulation of PI3K-Akt signaling pathway.展开更多
Ulcerative colitis(UC)is an incurable and highly complex digestive disease affecting millions of people worldwide.Compared to the current therapeutic drugs,bioactive peptides are more promising and safe substances as ...Ulcerative colitis(UC)is an incurable and highly complex digestive disease affecting millions of people worldwide.Compared to the current therapeutic drugs,bioactive peptides are more promising and safe substances as functional foods or drugs for the prevention and treatment of UC.The alcohol-soluble components from fermentation broth by fresh wheat germ and apple(AC-WGAF)were found to be effective in UC prevention in dextran sulfate sodium-induced mice in vivo.Herein,4 novel peptides are identifi ed from AC-WGAF by membrane ultrafi ltration,recycling preparative high-performance liquid chromatography,and matrix-assisted laser desorption–ionization time-of-fl ight/time-of-fl ight mass spectrometry,possessing anticolitis activity via using an in vitro model.One of those peptides named T24(PVLGPVRGPFPLL)exhibited the most remarkable anti-colitis activity by preventing tight junction protein loss,maintaining epithelial barrier integrity,and promoting cell proliferation during in vitro and in vivo studies by regulating mitogen-activated protein kinase signaling pathways.Thus,T24 is a promising peptide as a functional food or novel drug for UC prevention and treatment.展开更多
Objective:To investigate the hemostatic effect of modified Sijunzi Granules(MSG)in primary immune thrombocytopenia(ITP)zebrafish model and explore the potential mechanism.Methods:AB strain wild type zebrafish were tre...Objective:To investigate the hemostatic effect of modified Sijunzi Granules(MSG)in primary immune thrombocytopenia(ITP)zebrafish model and explore the potential mechanism.Methods:AB strain wild type zebrafish were treated with simvastatin(6μmol/L)for 24 h to establish the hemorrhage model(model control group).The zebrafish were treated with MSG at different doses(55.6,167,and 500μg/mL),respectively.The hemostatic effect was assessed by examining the intestinal bleeding and hemostatic rate.5-hydroxytryptamine(5-HT)content was determined using enzyme-linked immunosorbent assay(ELISA)assay.The expressions of5-HT2aR,5-HT2bR,and SERT genes were detected by quantitative real-time polymerase chain reaction(PCR).The protein expressions of protein kinase B(Akt),p-Akt,extracellular regulated protein kinases(Erk),and p-Erk were examined using Western blot analysis.Results:The intestinal bleeding rate was 37%,40%,and 80%in the55.6,167,and 500μg/mL dose of MSG,respectively,in which 55.6 and 167μg/mL MSG dose groups were associated with significantly decreased intestinal bleeding rate when compared with the model control group(70%,P<0.05).Significantly higher hemostatic rates were also observed in the 55.6μg/mL(54%)and 167μg/mL(52%)MSG dose groups(P<0.05).MSG increased the 5-HT content and mRNA expression levels of 5-HT2aR,5-HT2bR,and SERT(P<0.05).In addition,caspase3/7 activity was inhibited(P<0.05).Significant increase in p-Akt and p-Erk was also detected after treatment with MSG(P<0.05).Conclusions:MSG could reduce the incidence and severity of intestinal bleeding in zebrafish by activating MAPK/Erk and PI3K/Akt signal pathways through regulating the levels of 5-HT and its receptors,which may provide evidence for the treatment of ITP.展开更多
Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain. N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated ...Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain. N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated affect by activating a signaling pathway that involves cyclic adenosine monophosphate (cAMP)/protein ki- nase A (PKA) and/or extracellular regulated kinase (ERK)/cAMP-response element-binding protein (CREB). The present study investigated the contributions of the NMDAR glycine site and GluN2B subunit to the activation of ERK and CREB both in vitro and in vivo in rat rACC. Methods Immunohistochemistry and Western blot analy- sis were used to separately assess the expression of phospho-ERK (pERK) and phospho-CREB (pCREB) in vitro and in vivo. Double immunostaining was also used to determine the colocalization of pERK and pCREB. Results Both bath application of NMDA in brain slices in vitro and intraplantar injection of formalin into the rat hindpaw in vivo induced significant up-regulation of pERK and pCREB in the rACC, which was inhibited by the NMDAR antago- nist DL-2-amino-5-phospho-novaleric acid. Selective blockade of the NMDAR GluN2B subunit and the glycine- binding site, or degradation of endogenous D-serine, a co-agonist for the glycine site, significantly decreased the up- regulation of pERK and pCREB expression in the rACC. Further, the activated ERK predominantly colocalized with CREB. Conclusion Either the glycine site or the GluN2B subunit of NMDARs participates in the phosphorylation of ERK and CREB induced by bath application of NMDA in brain slices or hindpaw injection of 5% formalin in rats, and these might be fundamental molecular mechanisms underlying pain affect.展开更多
Qianjinba is primarily cultivated in the southern regions of China and finds extensive use in traditional Chinese medicine(TCM)for conditions such as rheumatism,arthralgia,and gynecological ailments.It has been offici...Qianjinba is primarily cultivated in the southern regions of China and finds extensive use in traditional Chinese medicine(TCM)for conditions such as rheumatism,arthralgia,and gynecological ailments.It has been officially recognized as a protected variety of TCM by the state.The aim of this study was to investigate the therapeutic potential of Qianjinba polysaccharide(QJBDT)in treating rheumatoid arthritis(RA)in mice,along with a preliminary exploration of its mechanisms for inhibiting RA in these animals.Kunming mice(KM)were randomly divided into several groups,including a normal group,a model group(LPS group),low-dose,medium-dose,and high-dose QJBDT groups,as well as a positive control group(TGP group),each consisting of 10 mice.To induce inflammation and create an RA model,type II collagen was injected into the right hind foot joint.Following a 7-day modeling period,various concentrations of QJBDT and the positive control drug total glycoside of peony were administered via gavage once a day for 21 consecutive days.Throughout the study,we monitored and recorded the mice's weight,measured foot swelling,and assessed the arthritis index on a weekly basis.We also conducted pathological examinations of joint tissues and analyzed the signal pathway of p38 mitogen-activated protein kinase(MAPK)as well as the protein expression of nuclear factor NF-κB in the mice’s right foot joint tissues.Additionally,we employed ELISA to detect the levels of interleukin-β(IL-β),IL-17,and tumor necrosis factor-α(TNF-α)in the mice’s serum.The results of this study revealed that QJBDT effectively reduced the degree of foot swelling and the arthritis index in collagen-induced arthritis mice while improving their weight loss(P<0.05).Furthermore,it alleviated the pathological damage observed in the mice’s joints.Notably,the expression of transcription factors p38 and NF-κB proteins was down-regulated(P<0.05),and the levels of inflammatory cytokines IL-β,IL-17,and TNF-αin the mice’s serum were decreased(P<0.05).In conclusion,this study demonstrated that polysaccharides could inhibit the expression of transcription factors p38 and NF-κB,reduce the production of inflammatory factors,and alleviate the progression of RA to a certain extent.展开更多
基金Liaoning Provincial Science and Technology Department Project,No.2023JH2/101700149Open Fund Project of Liaoning University of Traditional Chinese Medicine,No.zyzx2205.
文摘BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.
基金sponsored by the National Natural Science Foundation of China,No.81102595the Natural Science Foundation of Guangxi,No.2012GXNSFAA053113
文摘Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.
基金Natural Science Foundation of Anhui Province,No.2208085MH216Major Natural Science and Technology Project of Bengbu Medical College,No.2020byfy004Scientific Research Program of Anhui Provincial Health Commission,No.AHWJ2023BAc10028.
文摘BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy.Sodiumglucose cotransporter 2 inhibitors such as dapagliflozin,which are acclaimed for their efficacy in diabetes management,may influence macrophage polarization,thereby ameliorating diabetic nephropathy.This investigation delves into these mechanistic pathways,aiming to elucidate novel therapeutic strategies for diabetes.AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin.Concurrently,the human monocyte cell line cells were used for in vitro studies.Macrophage viability was assessed in a cell counting kit 8 assay,whereas apoptosis was evaluated by Annexin V/propidium iodide staining.Protein expression was examined through western blotting,and the expression levels of macrophage M1 surface immunosorbent assay,and quantitative real-time polymerase chain reaction analyses.RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice,evidenced by the downregulation of proapoptotic genes(Caspase 3),inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-α,and IL-1β],and M1 surface markers(inducible nitric oxide synthase,and cluster of differentiation 86),as well as the upregulation of the antiapoptotic gene BCL2.Moreover,dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway(PI3K,AKT,phosphorylated protein kinase B).These observations were corroborated in vitro,where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P,an activator of the PI3K/AKT signaling pathway.CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype,thereby mitigating inflammation and promoting macrophage apoptosis.These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.
文摘Objective:The aim of the study was to investigate the effect of c-Jun N-terminal protein kinase(JNK) signaling pathway on influencing the sensitivity to radiotherapy of human nasopharyngeal carcinoma CNE cells.Methods:Human nasopharyngeal carcinoma CNE multicellular spheroids(MCS) were constructed with three dimensional cell culture methods.Western blot was employed to analyze the activity of JNK signaling pathway in MCS after X-ray irradiation,and the expression of caspase-3 protein before and after using SP600125(a special inhibitor of JNK).X-ray induced cell apoptosis in MCS before and after treated with SP600125 were detected by TUNEL.Results:The level of JNK phosphorylation in MCS was a dynamic course after radiation,and there was a phosphorylation peaks at 2 h later,the apoptotic rate of MCS(P < 0.05) and the expression of caspase-3 protein(P < 0.05) were significantly increased after treated with SP600125.Conclusion:The transient activation of JNK played a important role in sensitivity to radiotherapy of CNE MCS via mediating survival signals,blocking this pathway accelerate cell apoptosis,which may be related to the increased expression of caspase-3.
基金financially supported by National Natural Science Foundation of China(Nos.81302794,81071841,81102853)the Study of Marsdenia tenacissima extract(MTE):Study on quality control of antitumor traditional Chinese medicine Xiao-Ai-Ping injection(No.2011ZX09201-201)
文摘Marsdenia tenacissima extract(MTE, trade name: Xiao-Ai-Ping injection) is an extract of a single Chinese plant medicine. It has been used for the treatment of cancer in China for decades, especially for esophageal cancer and other cancers in the digestive tract. In the present study, the potential mechanism for MTE's activity in esophageal cancer was explored. The effects of MTE on the proliferation of human esophageal cancer cells(KYSE150 and Eca-109) were investigated by the MTT assay, the Brd U(bromodeoxyuridine) incorporation immunofluorescence assay, and flow cytometric analysis. MTE inhibited cell proliferation through inducing G0/G1 cell cycle arrest in KYSE150 and Eca-109. Western blot analysis was employed to determine protein levels in the MTE treated cells. Compared with the control cells, the expression levels of the cell cycle regulatory proteins cyclin D1/D2/D3, cyclin E1, CDK2/4/6(CDK: cyclin dependent kinase), and p-Rb were decreased significantly in the cells treated with MTE at 40 mg·m L-1. In addition, MTE had an inhibitory effect on the MAPK(mitogen-activated protein kinase) signal transduction pathway, including ERK(extracellular signal-regulated kinase), JNK(c-Jun N-terminal kinase), and p38 MAPK. Moreover, MTE showed little additional effects on the regulation of cyclin D1/D3, CDK4/6, and p-Rb when the ERK pathway was already inhibited by the specific ERK inhibitor U0126. In conclusion, these data suggest that MTE inhibits human esophageal cancer cell proliferation through regulation of cell cycle regulatory proteins and the MAPK signaling pathways, which is probably mediated by the inhibition of ERK activation.
基金National Natural Science Foundation of China(No.81490533)。
文摘Background: Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism.Methods: We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditionsin vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway.Results: The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20vs. 0.44 ± 0.08,t = 6.67,P < 0.05), while the expression of p62 was decreased (0.77 ± 0.04vs. 0.95 ± 0.10,t = 2.90,P < 0.05), and PI3K (0.40 ± 0.06vs. 0.63 ± 0.10,t = 3.42,P < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02vs. 0.58 ± 0.03,t = 9.13,P < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14vs. 1.27 ± 0.20,t = 4.12,P < 0.05), up-regulated p62 expression (1.10 ± 0.20vs. 0.77 ± 0.04,t = 2.80,P < 0.05), and up-regulated PI3K (0.54 ± 0.05vs. 0.40 ± 0.06,t = 3.11,P < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05vs. 0.39 ± 0.02,t = 9.13,P < 0.05). A whole-genome microarray assay screened the differentially expressed geneHO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration ofHO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway.Conclusions: Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstancesin vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI.
文摘Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. However, NRTI drug therapy can cause peripheral neuropathic pain. In this study, we aimed to investigate the mechanisms ofrapamycin on the pain sensitization of model mice by in vivo experiments to explore the effect of mammalian target of rapamycin (mTOR) in the pathogenesis ofneuropathic pain caused by NRTIs. Methods: Male Kun Ming (KM) mice weighing 20-2 g were divided into control, 2 mg/kg rapamycin, 12 mg/kg stavudine, and CMC-Na groups. Drugs were orally administered to mice for 42 consecutive days. The von Frey filament detection and thermal pain tests were conducted on day 7, 14, 21, 28, 35, and 42 after drug administration. After the last behavioral tests, immunohistochemistry and western blotting assay were used for the measurement of mTOR and other biomarkers. Multivariate analysis of variance was used. Results: The beneficial effects ofrapamycin on neuropathic pain were attributed to a reduction in mammalian target of rapamycin sensitive complex 1 (mTORC1)-positive cells (70.80± 2.41 vs. 112.30 ± 5.66, F = 34.36, P 〈 0.01 ) and mTORC1 activity in the mouse spinal cord. Mechanistic studies revealed that Protein Kinase B (Akt)/mTOR signaling pathway blockade with rapamycin prevented the phosphorylation of mTORC1 in stavudine-intoxicated mice (0.72 ± 0.04 vs. 0.86 ± 0.03, F=4.24, P = 0.045), as well as decreased the expression of phospho-pTOS6K (0.47 ± 0.01 vs. 0.68 ± 0.03, F=6.01, P = 0.022) and phospho-4EBP1 (0.90 ± 0.04 vs. 0.94 ± 0.06, F= 0.28, P = 0.646). Conclusions: Taken together, these results suggest that stavudine elevates the expression and activity of mTORC1 in the spinal cord through activating the Akt/mTOR signaling pathway. The data also provide evidence that rapamycin might be useful for the treatment of peripheral neuropathic pain.
基金supported by the National Natural Science Foundation of China(NSFC)Youth Project(No.82204397).
文摘Background:In this research,we investigated the anti-cancer effect and the related mechanism of 2-[2-(4-chlorobenzamidomethylthio)-1,3,4-thiadiazol-5-yl]-1,2-benziselenazol-3(2H)-one compound(CTBO)and 2-[2-(4-nitrobenzamidomethylthio)-1,3,4-thiadiazol-5-yl]-1,2-benziselenazol-3(2H)-one compound(NTBO),which we synthesized in our lab previously.Methods:We applied the human lung cancer adenocarcinoma A549 cells to investigate the anti-tumor effect of CTBO and NTBO.The following methods were used in the research,including methylthiazolyldiphenyl-tetrazolium bromide assay,one-step terminal-deoxynucleotidyl transferase mediated nick end labeling,transcriptome sequencing analysis,quantitative reverse transcription polymerase chain reaction and western blot.Results:The results showed that both CTBO and NTBO significantly inhibited the A549 cells proliferation and induced the A549 cells apoptosis.The transcriptome sequencing analysis results illustrated that the two derivatives might exert the apoptotic effects through mitogen-activated protein kinase and tumor necrosis factor signaling pathways activation.Further,the western blot results suggested that CTBO and NTBO exerted anti-cancer effect through different molecular mechanisms.Conclusion:The results above provided fundamental research evidence for the further application of benziselenazolone derivatives in clinical.
基金Supported by the Key Discipline of Zhejiang Province in Medical Technology(First Class,Category A)and the Health Project of the Science and Technology Department of Wenzhou,No.Y20220029.
文摘BACKGROUND Colorectal cancer(CRC)ranks among the most prevalent malignant tumors globally.Recent reports suggest that Fusobacterium nucleatum(F.nucleatum)contributes to the initiation,progression,and prognosis of CRC.Butyrate,a short-chain fatty acid derived from the bacterial fermentation of soluble dietary fiber,is known to inhibit various cancers.This study is designed to explore whether F.nucleatum influences the onset and progression of CRC by impacting the intestinal metabolite butyric acid.AIM To investigate the mechanism by which F.nucleatum affects CRC occurrence and development.METHODS Alterations in the gut microbiota of BALB/c mice were observed following the oral administration of F.nucleatum.Additionally,DLD-1 and HCT116 cell lines were exposed to sodium butyrate(NaB)and F.nucleatum in vitro to examine the effects on proliferative proteins and mitochondrial function.RESULTS Our research indicates that the prevalence of F.nucleatum in fecal samples from CRC patients is significantly greater than in healthy counterparts,while the prevalence of butyrate-producing bacteria is notably lower.In mice colonized with F.nucleatum,the population of butyrate-producing bacteria decreased,resulting in altered levels of butyric acid,a key intestinal metabolite of butyrate.Exposure to NaB can impair mitochondrial morphology and diminish mitochondrial membrane potential in DLD-1 and HCT116 CRC cells.Consequently,this leads to modulated production of adenosine triphosphate and reactive oxygen species,thereby inhibiting cancer cell prolif-eration.Additionally,NaB triggers the adenosine monophosphate-activated protein kinase(AMPK)signaling pathway,blocks the cell cycle in HCT116 and DLD-1 cells,and curtails the proliferation of CRC cells.The combined presence of F.nucleatum and NaB attenuated the effects of the latter.By employing small interfering RNA to suppress AMPK,it was demonstrated that AMPK is essential for NaB’s inhibition of CRC cell proliferation.CONCLUSION F.nucleatum can promote cancer progression through its inhibitory effect on butyric acid,via the AMPK signaling pathway.
文摘Objective:To examine the therapeutic effect of Fangji Fuling Decoction(FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.Methods:A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide(LPS).RAW264.7 cells were stimulated by 250 ng/m L LPS to establish an in vitro cell model.Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis.Through ectopic expression and depletion experiments,the effect of FFD on multiple organ damage in septic mice,as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A(MAPK14/FOXO3A) signaling pathway,was analyzed.Results:FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro(P<0.05).Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis.As confirmed by in vitro cell experiments,FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation(P<0.05).Furthermore,FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice(P<0.05).Conclusion:FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.
基金Supported by the Key Program of Shandong Province,China,No.2016CYJS08A01-6.
文摘BACKGROUND In China banxia xiexin decoction(BXD)has been used in treating gastric cancer(GC)for thousands of years and BXD has a good role in reversing GC histopathology,but its chemical composition and action mechanism are still unknown.AIM To investigate the mechanism of action of BXD against GC based on transcriptomics,network pharmacology,in vivo and in vitro experiments.METHODS The transplanted tumor model was prepared,and the nude mouse were pathologically examined after administration,and hematoxylin-eosin staining was performed.The active ingredients of BXD were quality controlled and identified using ultra-performance liquid chromatography tandem quadrupole electrostatic field orbitrap mass spectrometry(UPLC-Q-Orbitrap MS/MS),and traditional Chinese medicines systems pharmacology platform,drug bank and the Swiss target prediction platform to predict the relevant targets,the differentially expressed genes(DEGs)of GC were screened by RNA-seq sequencing,and the overlapping targets were analyzed to obtain the key targets and pathways.Cell Counting Kit-8,apoptosis assay,cell migration and Realtime fluorescence quantitative polymerase chain reaction were used for in vitro experiments.RESULTS All dosing groups inhibited the growth of transplanted tumors in laboratory-bred strain nude,with the capecitabine group and the BXD medium-dose group being the best.A total of 29 compounds and 859 potential targets in BXD were identified by UPLC-Q-Orbitrap MS/MS and network pharmacology,RNA-seq sequencing found 4767 GC DEGs,which were combined with network pharmacology and analyzed 246 potential therapeutic targets were obtained and pathway results showed that BXD may against GC through the Phosphoinositide 3-kinase(PI3K)/protein kinase B(AKt)signaling pathway.In vitro cellular experiments confirmed that BXDcontaining serum and LY294002 could inhibit the proliferation of GC cells,promote apoptosis,and inhibit the migration of GC cells by decreasing the expression of EGFR,PIK3CA,IL6,BCL2 and AKT1 in the PI3K-Akt pathway in MGC-803 expression.CONCLUSION BXD has the effect of inhibiting tumor growth rate and delaying the development of GC.Its mechanism of action may be related to the regulation of PI3K-Akt signaling pathway.
基金supported by the National Key Research and Development Plan,China(2016YFD0400203-4)the Shenzhen Science and Technology Innovation Commission(KCXFZ20201221173207022)。
文摘Ulcerative colitis(UC)is an incurable and highly complex digestive disease affecting millions of people worldwide.Compared to the current therapeutic drugs,bioactive peptides are more promising and safe substances as functional foods or drugs for the prevention and treatment of UC.The alcohol-soluble components from fermentation broth by fresh wheat germ and apple(AC-WGAF)were found to be effective in UC prevention in dextran sulfate sodium-induced mice in vivo.Herein,4 novel peptides are identifi ed from AC-WGAF by membrane ultrafi ltration,recycling preparative high-performance liquid chromatography,and matrix-assisted laser desorption–ionization time-of-fl ight/time-of-fl ight mass spectrometry,possessing anticolitis activity via using an in vitro model.One of those peptides named T24(PVLGPVRGPFPLL)exhibited the most remarkable anti-colitis activity by preventing tight junction protein loss,maintaining epithelial barrier integrity,and promoting cell proliferation during in vitro and in vivo studies by regulating mitogen-activated protein kinase signaling pathways.Thus,T24 is a promising peptide as a functional food or novel drug for UC prevention and treatment.
基金Supported by Natural Science Foundation of Zhejiang Province(No.LQ23H270001)。
文摘Objective:To investigate the hemostatic effect of modified Sijunzi Granules(MSG)in primary immune thrombocytopenia(ITP)zebrafish model and explore the potential mechanism.Methods:AB strain wild type zebrafish were treated with simvastatin(6μmol/L)for 24 h to establish the hemorrhage model(model control group).The zebrafish were treated with MSG at different doses(55.6,167,and 500μg/mL),respectively.The hemostatic effect was assessed by examining the intestinal bleeding and hemostatic rate.5-hydroxytryptamine(5-HT)content was determined using enzyme-linked immunosorbent assay(ELISA)assay.The expressions of5-HT2aR,5-HT2bR,and SERT genes were detected by quantitative real-time polymerase chain reaction(PCR).The protein expressions of protein kinase B(Akt),p-Akt,extracellular regulated protein kinases(Erk),and p-Erk were examined using Western blot analysis.Results:The intestinal bleeding rate was 37%,40%,and 80%in the55.6,167,and 500μg/mL dose of MSG,respectively,in which 55.6 and 167μg/mL MSG dose groups were associated with significantly decreased intestinal bleeding rate when compared with the model control group(70%,P<0.05).Significantly higher hemostatic rates were also observed in the 55.6μg/mL(54%)and 167μg/mL(52%)MSG dose groups(P<0.05).MSG increased the 5-HT content and mRNA expression levels of 5-HT2aR,5-HT2bR,and SERT(P<0.05).In addition,caspase3/7 activity was inhibited(P<0.05).Significant increase in p-Akt and p-Erk was also detected after treatment with MSG(P<0.05).Conclusions:MSG could reduce the incidence and severity of intestinal bleeding in zebrafish by activating MAPK/Erk and PI3K/Akt signal pathways through regulating the levels of 5-HT and its receptors,which may provide evidence for the treatment of ITP.
基金supported by the National Natural Science Foundation of China (30900444,31070973,30870835,31121061 and 30830044)
文摘Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain. N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated affect by activating a signaling pathway that involves cyclic adenosine monophosphate (cAMP)/protein ki- nase A (PKA) and/or extracellular regulated kinase (ERK)/cAMP-response element-binding protein (CREB). The present study investigated the contributions of the NMDAR glycine site and GluN2B subunit to the activation of ERK and CREB both in vitro and in vivo in rat rACC. Methods Immunohistochemistry and Western blot analy- sis were used to separately assess the expression of phospho-ERK (pERK) and phospho-CREB (pCREB) in vitro and in vivo. Double immunostaining was also used to determine the colocalization of pERK and pCREB. Results Both bath application of NMDA in brain slices in vitro and intraplantar injection of formalin into the rat hindpaw in vivo induced significant up-regulation of pERK and pCREB in the rACC, which was inhibited by the NMDAR antago- nist DL-2-amino-5-phospho-novaleric acid. Selective blockade of the NMDAR GluN2B subunit and the glycine- binding site, or degradation of endogenous D-serine, a co-agonist for the glycine site, significantly decreased the up- regulation of pERK and pCREB expression in the rACC. Further, the activated ERK predominantly colocalized with CREB. Conclusion Either the glycine site or the GluN2B subunit of NMDARs participates in the phosphorylation of ERK and CREB induced by bath application of NMDA in brain slices or hindpaw injection of 5% formalin in rats, and these might be fundamental molecular mechanisms underlying pain affect.
基金Shandong Provincial Key Project of TCM Science and Technology(Grant No.2021Z051)Shandong Medical and Health Science and Technology Development Program(Grant No.202102040972)supported by Binzhou Medical College Student Innovation and Entrepreneurship Training Program(Grant No.X202210440354).
文摘Qianjinba is primarily cultivated in the southern regions of China and finds extensive use in traditional Chinese medicine(TCM)for conditions such as rheumatism,arthralgia,and gynecological ailments.It has been officially recognized as a protected variety of TCM by the state.The aim of this study was to investigate the therapeutic potential of Qianjinba polysaccharide(QJBDT)in treating rheumatoid arthritis(RA)in mice,along with a preliminary exploration of its mechanisms for inhibiting RA in these animals.Kunming mice(KM)were randomly divided into several groups,including a normal group,a model group(LPS group),low-dose,medium-dose,and high-dose QJBDT groups,as well as a positive control group(TGP group),each consisting of 10 mice.To induce inflammation and create an RA model,type II collagen was injected into the right hind foot joint.Following a 7-day modeling period,various concentrations of QJBDT and the positive control drug total glycoside of peony were administered via gavage once a day for 21 consecutive days.Throughout the study,we monitored and recorded the mice's weight,measured foot swelling,and assessed the arthritis index on a weekly basis.We also conducted pathological examinations of joint tissues and analyzed the signal pathway of p38 mitogen-activated protein kinase(MAPK)as well as the protein expression of nuclear factor NF-κB in the mice’s right foot joint tissues.Additionally,we employed ELISA to detect the levels of interleukin-β(IL-β),IL-17,and tumor necrosis factor-α(TNF-α)in the mice’s serum.The results of this study revealed that QJBDT effectively reduced the degree of foot swelling and the arthritis index in collagen-induced arthritis mice while improving their weight loss(P<0.05).Furthermore,it alleviated the pathological damage observed in the mice’s joints.Notably,the expression of transcription factors p38 and NF-κB proteins was down-regulated(P<0.05),and the levels of inflammatory cytokines IL-β,IL-17,and TNF-αin the mice’s serum were decreased(P<0.05).In conclusion,this study demonstrated that polysaccharides could inhibit the expression of transcription factors p38 and NF-κB,reduce the production of inflammatory factors,and alleviate the progression of RA to a certain extent.