A distance measure that infers to indicate the evolutionary relationship of protein structures has been developed based on spatial preference factors of residues. The spatial preference factor is a reflection of the e...A distance measure that infers to indicate the evolutionary relationship of protein structures has been developed based on spatial preference factors of residues. The spatial preference factor is a reflection of the environment of residues in tertiary structure. Compared with the phyletic relationships derived from sequence homologies and three-dimensional structures, we find that the two lines of evolution are similar in general. This approach is applied to a group of glins here.展开更多
Food allergens are mainly naturally-occurring proteins with immunoglobulin E(IgE)-binding epitopes.Understanding the structural and immunogenic characteristics of allergenic proteins is essential in assessing whether ...Food allergens are mainly naturally-occurring proteins with immunoglobulin E(IgE)-binding epitopes.Understanding the structural and immunogenic characteristics of allergenic proteins is essential in assessing whether and how food processing techniques reduce allergenicity.We here discuss the impacts of food processing technologies on the modification of physicochemical,structural,and immunogenic properties of allergenic proteins.Detection techniques for characterizing changes in these properties of food allergens are summarized.Food processing helps to reduce allergenicity by aggregating or denaturing proteins,which masks,modifies,or destroys antigenic epitopes,whereas,it cannot eliminate allergenicity completely,and sometimes even improves allergenicity by exposing new epitopes.Moreover,most food processing techniques have been tested on purified food allergens rather than food products due to potential interference of other food components.We provide guidance for further development of processing operations that can decrease the allergenicity of allergenic food proteins without negatively impacting the nutritional profile.展开更多
It has been reported that fresh edible rice has more bioactive compounds and its protein is easier to digest and has lower hypoallergenic than mature rice. In this paper, the changes in structure and functional proper...It has been reported that fresh edible rice has more bioactive compounds and its protein is easier to digest and has lower hypoallergenic than mature rice. In this paper, the changes in structure and functional properties of proteins at five different stages, including early milky stage(EMS), middle milky stage(MMS), late milky stage(LMS), waxy ripe stage(WS)and ripening stage(RS), during the seed development were investigated. It was found that with the seed developing, the molecular weight of fresh rice protein gradually become larger while the secondary structure changed from the highest content of disordered structure at MMS to the highest content of ordered structure at RS, which affect the surface hydrophobicity and then the functional properties of proteins, including foaming properties, emulsifying properties and oil holding capacity. Fresh rice protein at MMS has the strongest surface hydrophobicity while fresh edible rice protein at RS has the strongest oil holding capability. The results of our study can provide a theoretical basis for the application of fresh rice protein in the food industry and help to develop new fresh edible rice food.展开更多
Hausdorff distance between two compact sets, defined as the maximum distance from a point of one set to another set, has many application in computer science. It is a good measure for the similarity of two sets. This ...Hausdorff distance between two compact sets, defined as the maximum distance from a point of one set to another set, has many application in computer science. It is a good measure for the similarity of two sets. This paper proves that the shape distance between two compact sets in R^n defined by nfinimum Hausdorff distance under rigid motions is a distance. The authors introduce similarity comparison problems in protein science, and propose that this measure may have good application to comparison of protein structure as well. For calculation of this distance, the authors give one dimensional formulas for problems (2, n), (3, 3), and (3, 4). These formulas can reduce time needed for solving these problems. The authors did some data, this formula can reduce time needed to one As n increases, it would save more time. numerical experiments for (2, n). On these sets of fifteenth of the best algorithms known on average.展开更多
Proteins perform a variety of functions in living organisms and their functions are largely determined by their shape. In this paper, we propose a novel mathematical method for designing protein-like molecules of a gi...Proteins perform a variety of functions in living organisms and their functions are largely determined by their shape. In this paper, we propose a novel mathematical method for designing protein-like molecules of a given shape. In the mathematical model, molecules are represented as loops of n-simplices (2-simplices are triangles and 3-simplices are tetrahedra). We design a new molecule of a given shape by patching together a set of smaller molecules that cover the shape. The covering set of small molecules is defined using a binary relation between sets of molecules. A new molecule is then obtained as a sum of the smaller molecules, where addition of molecules is defined using transformations acting on a set of (n + 1)-dimensional cones. Due to page limitations, only the two-dimensional case (i.e., loops of triangles) is considered. No prior knowledge of Sheaf Theory, Category Theory, or Protein Science is required. The author hopes that this paper will encourage further collaboration between Mathematics and Protein Science.展开更多
Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the...Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the quantity of original microorganisms in wheat flour produced by traditional method is relatively high, which is detrimental to the processing quality and storage stability of FWN. Consequently, it becomes imperative to decrease microorganisms in wheat flour. Microwave treatment has been regarded as a promising method in the food industry due to its potential in inhibiting microbial growth and inactivating enzymes without causing adverse effect on the food quality. This study aims to investigate the effects of microwave treatment of wheat kernels under different powers(1, 2, 3, 4, 5 kW) on the physicochemical properties of wheat flour and the quality of FWN. The results revealed that microwave treatment had a significant effect on microbial inhibition and enzyme inactivation, wherein the total plate count(TPC) and yeast and mold counts(YMC) decreased by 0.87 lg(CFU/g) and 1.13 lg(CFU/g) respectively, and PPO activity decreased from 11.40 U to 6.31 U. The dough quality properties, such as stability, extensibility, and starch viscosity, improved significantly under different microwave conditions. Confocal laser scanning microscopy(CLSM) images indicated that starch and proteins aggregated gradually in treated flour, altering rheological properties of dough. From the results of scanning electron microscopy(SEM), microwave treatment led to the appearance of disrupted structure in the gluten proteins, but the secondary structure of proteins altered slightly. Rheological properties of dough confirmed that the microwave treatment greatly affected processing characteristics of wheat flour products, with significant advantageous consequences on product quality, especially for textural properties of FWN. Furthermore, FWN darkening could be inhibited noticeably after microwave treatment, thereby prolonging its shelf life. Therefore, microwave treatment could thus be an effective, practical technology to produce low-bacterial flour and thereby enhance its product quality.展开更多
Protein sequences as special heterogeneous sequences are rare in the amino acid sequence space. The specific sequen- tial order of amino acids of a protein is essential to its 3D structure. On the whole, the correlati...Protein sequences as special heterogeneous sequences are rare in the amino acid sequence space. The specific sequen- tial order of amino acids of a protein is essential to its 3D structure. On the whole, the correlation between sequence and structure of a protein is not so strong. How well would a protein sequence contain its structural information? How does a sequence determine its native structure? Keeping the globular proteins in mind, we discuss several problems from sequence to structure.展开更多
The electronic structure of protein chains L and M in photosynthetic reaction center (PRC) of Rhodobacter sphaeroides (Van Niel) Imhoff, Truper et Pfennig) was studied by using the Overlapping Dimer Approximation meth...The electronic structure of protein chains L and M in photosynthetic reaction center (PRC) of Rhodobacter sphaeroides (Van Niel) Imhoff, Truper et Pfennig) was studied by using the Overlapping Dimer Approximation method and the Extended Negative Factor Counter method at ab initio level. The result indicated that: (1) Amino acid residues, the molecular orbitals of which composed the main components of frontier orbitals of protein chain L (M), are located at the random coil areas of chain L (alpha helix areas of chain M). Since the random coil is flexible and more easy to change its conformation in the electron transfer process and to reduce the energy of the system, and the structure of the alpha helix is reletively stable, this difference might be one of the causes for the electron transfer in photosynthetic reaction center (PRC) only takes place along the L branch. (2) The His residues which axially coordinated to the 'special pair' P and accessory chlorophyll molecules (ABChls) are essentially important for the E-LUMO levels of P and ABChl. But, the corresponding molecular orbitals of these His residues do not appear in the composition of frontier orbitals of protein chains. It means that the interaction between pigment molecules and protein chains do not influence the contribution to the frontier orbitals of protein chains explicitly, but influences the corresponding E-LUMO levels significantly.展开更多
[Objective] This study aimed to predict the structure of protein OmpH from Pasteurella multocida C47-8 (PmC47-8) strain of yak. [Method] Online BLAST, signal peptide prediction, secondary structure prediction and pr...[Objective] This study aimed to predict the structure of protein OmpH from Pasteurella multocida C47-8 (PmC47-8) strain of yak. [Method] Online BLAST, signal peptide prediction, secondary structure prediction and protein characteristics of sequencing result of gene OmpH from PmC47-8 strain were analyzed. [Result] The similarities of gene OmpH from PmC47-8 with the published 81 OmpH genes were between 84% and 99%; a signal peptide was found with the cleavage sites between 20 and 21 in the polypeptide; secondary structure prediction showed that folding structure accounted for 49.8% and loop structure for 50.2%; it predicted that there were 7 O-glycosylation sites in OmpH protein with the amino acid residual sites of 2, 45, 48, 330, 716, 721, 723, respectively, and 2 N-glycosylation sites with the amino acid residual sites of 15 and 35. [Conclusion] This study lays the foundation for the study on the immunity of OmpH gene from yak.展开更多
Proteolysis is one of the most important biochemical reactions during cheese ripening.Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing ch...Proteolysis is one of the most important biochemical reactions during cheese ripening.Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing cheese quality.Fourier transform infrared spectroscopy(FTIR),with self-deconvolution,second derivative analysis and band curve-fitting,was used to characterize the secondary structure of proteins in Cheddar cheese during ripening.The spectra of the amide I region showed great similarity,while the relative contents of the secondary structures underwent a series of changes.As ripening progressed,the α-helix content decreased and the β-sheet content increased.This structural shift was attributed to the strengthening of hydrogen bonds that resulted from hydrolysis of caseins.In summary,FTIR could provide the basis for rapid characterization of cheese that is undergoing ripening.展开更多
Currently many facets of genetic information are illdefined. In particular, how protein folding is genetically regulated has been a long-standing issue for genetics and protein biology. And a generic mechanistic model...Currently many facets of genetic information are illdefined. In particular, how protein folding is genetically regulated has been a long-standing issue for genetics and protein biology. And a generic mechanistic model with supports of genomic data is still lacking. Recent technological advances have enabled much needed genome-wide experiments. While putting the effect of codon optimality on debate, these studies have supplied mounting evidence suggesting a role of m RNA structure in the regulation of protein folding by modulating translational elongation rate. In conjunctions with previous theories, this mechanistic model of protein folding guided by m RNA structure shall expand our understandings of genetic information and offer new insights into various biomedical puzzles.展开更多
The aim of the present study was to assess whether Fourier transform infrared spectrometry (FTIR) micro-spectroscopy could produce distinct spectral information on protein of old myocardial infarction (OMI) and to set...The aim of the present study was to assess whether Fourier transform infrared spectrometry (FTIR) micro-spectroscopy could produce distinct spectral information on protein of old myocardial infarction (OMI) and to set them as molecular markers to diagnose atypical OMI. Paraffin-embedded heart samples were derived from victims dying of OMI. In combination with histological stain, FTIR and infrared micro-spectroscopy, the characteristics of OMI were analyzed morphologically and molecularly. The most relevant bands identified were the amide A, B, Ⅰ and Ⅱ, showing crucial spectral differences between apparent normal region and OMI region, including the peak position blue shift and the increased intensity of OMI, moreover relative increase in α-helix and decrease in β-sheet of protein secondary structures in OMI. Comparing to single spectral band, the I1650/I1550 ratio was increased and rationally used as a molecular marker for diagnosing OMI. These novel preliminary findings supported further exploration of FTIR molecular profiling in clinical or forensic study, and were in accordance with histopathology.展开更多
The liver is the site of synthesis of the majority of circulating proteins.Besides initial polypeptide synthesis,sophisticated machinery is involved in the further processing of proteins by removing parts of them and/...The liver is the site of synthesis of the majority of circulating proteins.Besides initial polypeptide synthesis,sophisticated machinery is involved in the further processing of proteins by removing parts of them and/or adding functional groups and small molecules tailoring the final molecule to suit its physiological purpose.Posttranslational modifications(PTMs)design a network of molecules with the common protein ancestor but with slightly or considerably varying activity/localization/purpose.PTMs can change under pathological conditions,giving rise to aberrant or overmodified proteins.Undesired changes in the structure of proteins most often accompany undesired changes in their function,such as reduced activity or the appearance of new effects.Proper protein processing is essential for the reactions in living beings and crucial for the overall quality control.Modifications that occur on proteins synthesized in the liver whose PTMs are cirrhosis-related are oxidation,nitration,glycosylation,acetylation,and ubiquitination.Some of them predominantly affect proteins that remain in liver cells,whereas others predominantly occur on proteins that leave the liver or originate from other tissues and perform their function in the circulation.Altered PTMs of certain proteins are potential candidates as biomarkers of liver-related diseases,including cirrhosis.This review will focus on PTMs on proteins whose structural changes in cirrhosis exert or are suspected to exert the most serious functional consequences.展开更多
AIM: To construct the eukaryotic expression plasmid containing HCV NS3 segment and to analyze the expression of NS3 protein in normal human hepatocyte HL-7702.METHODS: We amplified HCV NS3 fragment from plasmid pBRT...AIM: To construct the eukaryotic expression plasmid containing HCV NS3 segment and to analyze the expression of NS3 protein in normal human hepatocyte HL-7702.METHODS: We amplified HCV NS3 fragment from plasmid pBRTM/HCV 1-3011 containing the whole length of HCV genome, recombined it with expression vector pcDNA3.1(-) to form the eukaryotic expression vector pcDNA3.1(-)/NS3, and transfected human HL-7702 hepatocytes with the recombined plasmid by cationic polymers. The expressed HCV NS3 protein was detected and analyzed by immunohistochemical method and Western blot.RESULTS: The amplified NS3 fragments had correct molecule weight and sequence. The successfully constructed eukaryotic expression plasmids were transfected to HL-7702 cells. The expressed NS3 proteins had correct molecular weight 70000.CONCLUSION: Eukaryotic expression vector pcDNA3.1 (-)/NS3 containing NS3 segment of HCV can be constructed, the sequence of NS3 fragments is consistent with the template. Normal human HL-7702 hepatocytes can efficiently express specific HCV NS3 protein in vitro.展开更多
We introduced a new method---duration Hidden Markov Model (dHMM) to predicate the secondary structure of Protein. In our study, we divide the basic second structure of protein into three parts: H (a-Helix), E (B-sheet...We introduced a new method---duration Hidden Markov Model (dHMM) to predicate the secondary structure of Protein. In our study, we divide the basic second structure of protein into three parts: H (a-Helix), E (B-sheet) and O (others, include coil and turn). HMM is a kind of probabilistic model which more thinking of the interaction between adjacent amino acids (these interaction were represented by transmit probability), and we use genetic algorithm to determine the model parameters. After improving on the model and fixed on the parameters of the model, we write a program HMMPS. Our example shows that HMM is a nice method for protein secondary structure prediction.展开更多
The algorithm based on combination learning usually is superior to a singleclassification algorithm on the task of protein secondary structure prediction. However,the assignment of the weight of the base classifier us...The algorithm based on combination learning usually is superior to a singleclassification algorithm on the task of protein secondary structure prediction. However,the assignment of the weight of the base classifier usually lacks decision-makingevidence. In this paper, we propose a protein secondary structure prediction method withdynamic self-adaptation combination strategy based on entropy, where the weights areassigned according to the entropy of posterior probabilities outputted by base classifiers.The higher entropy value means a lower weight for the base classifier. The final structureprediction is decided by the weighted combination of posterior probabilities. Extensiveexperiments on CB513 dataset demonstrates that the proposed method outperforms theexisting methods, which can effectively improve the prediction performance.展开更多
Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an "integrative structural biology" approach has...Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an "integrative structural biology" approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and lowresolution experimental data using computer simulations. Small-angle x-ray scattering(SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin.展开更多
β-TCP, as one of calcium phosphates ceramics, exerts perfect biocompatibility and osteoconductivity, and is clinically used as a bone graft substitute for decades. Consequently, the effects of β-TCP ceramics on intr...β-TCP, as one of calcium phosphates ceramics, exerts perfect biocompatibility and osteoconductivity, and is clinically used as a bone graft substitute for decades. Consequently, the effects of β-TCP ceramics on intracellular Ca2+ concentration, mineralization of osteoblast and BSA protein structure were studied. Results showed that β-TCP could increase the intracelluar Ca2+ concentration and mineralization of osteoblast, indicating that β-TCP ceramics could take part in the organic metabolism and the degradation product had no detrimental effect on osteoblast in vitro. Furthermore, β-TCP ceramics could increase the content of α-helix and β-pleated sheet and change BSA into more ordering structure, those changes might be favorable for the biomineralization after β-TCP ceramics implanted.展开更多
Based on the concept of ant colony optimization and the idea of population in genetic algorithm, a novel global optimization algorithm, called the hybrid ant colony optimization (HACO), is proposed in this paper to ...Based on the concept of ant colony optimization and the idea of population in genetic algorithm, a novel global optimization algorithm, called the hybrid ant colony optimization (HACO), is proposed in this paper to tackle continuous-space optimization problems. It was compared with other well-known stochastic methods in the optimization of the benchmark functions and was also used to solve the problem of selecting appropriate dilation efficiently by optimizing the wavelet power spectrum of the hydrophobic sequence of protein, which is the key step on using continuous wavelet transform (CWT) to predict a-helices and connecting peptides.展开更多
The secondary structure of a protein is critical for establishing a link between the protein primary and tertiary structures.For this reason,it is important to design methods for accurate protein secondary structure p...The secondary structure of a protein is critical for establishing a link between the protein primary and tertiary structures.For this reason,it is important to design methods for accurate protein secondary structure prediction.Most of the existing computational techniques for protein structural and functional prediction are based onmachine learning with shallowframeworks.Different deep learning architectures have already been applied to tackle protein secondary structure prediction problem.In this study,deep learning based models,i.e.,convolutional neural network and long short-term memory for protein secondary structure prediction were proposed.The input to proposed models is amino acid sequences which were derived from CulledPDB dataset.Hyperparameter tuning with cross validation was employed to attain best parameters for the proposed models.The proposed models enables effective processing of amino acids and attain approximately 87.05%and 87.47%Q3 accuracy of protein secondary structure prediction for convolutional neural network and long short-term memory models,respectively.展开更多
文摘A distance measure that infers to indicate the evolutionary relationship of protein structures has been developed based on spatial preference factors of residues. The spatial preference factor is a reflection of the environment of residues in tertiary structure. Compared with the phyletic relationships derived from sequence homologies and three-dimensional structures, we find that the two lines of evolution are similar in general. This approach is applied to a group of glins here.
基金supported by the National Natural Science Foundation of China (32102605)the Agricultural Science and Technology Innovation Program under Grant (CAAS-ASTIP-2020IAR)the Earmarked Fund for CARS (CARS-44)。
文摘Food allergens are mainly naturally-occurring proteins with immunoglobulin E(IgE)-binding epitopes.Understanding the structural and immunogenic characteristics of allergenic proteins is essential in assessing whether and how food processing techniques reduce allergenicity.We here discuss the impacts of food processing technologies on the modification of physicochemical,structural,and immunogenic properties of allergenic proteins.Detection techniques for characterizing changes in these properties of food allergens are summarized.Food processing helps to reduce allergenicity by aggregating or denaturing proteins,which masks,modifies,or destroys antigenic epitopes,whereas,it cannot eliminate allergenicity completely,and sometimes even improves allergenicity by exposing new epitopes.Moreover,most food processing techniques have been tested on purified food allergens rather than food products due to potential interference of other food components.We provide guidance for further development of processing operations that can decrease the allergenicity of allergenic food proteins without negatively impacting the nutritional profile.
基金the financial support from the Postdoctoral Research Project of Heilongjiang Provincial Department of Human Resources and Social Security (LBH-Q21156)Heilongjiang BaYi Agricultural University Support Program for San Zong San Heng (ZDZX202104)+3 种基金Science Foundation Project of Heilongjiang Province (QC2015028)National Natural Science Foundation of China (32072258)Major Science and technology Program of Heilongjiang (2019ZX08B02,2020ZX08B02)Central financial support for the development of local colleges and universities,Graduate research and innovation project of Harbin University of Commerce (YJSCX2020636HSD)。
文摘It has been reported that fresh edible rice has more bioactive compounds and its protein is easier to digest and has lower hypoallergenic than mature rice. In this paper, the changes in structure and functional properties of proteins at five different stages, including early milky stage(EMS), middle milky stage(MMS), late milky stage(LMS), waxy ripe stage(WS)and ripening stage(RS), during the seed development were investigated. It was found that with the seed developing, the molecular weight of fresh rice protein gradually become larger while the secondary structure changed from the highest content of disordered structure at MMS to the highest content of ordered structure at RS, which affect the surface hydrophobicity and then the functional properties of proteins, including foaming properties, emulsifying properties and oil holding capacity. Fresh rice protein at MMS has the strongest surface hydrophobicity while fresh edible rice protein at RS has the strongest oil holding capability. The results of our study can provide a theoretical basis for the application of fresh rice protein in the food industry and help to develop new fresh edible rice food.
基金supported by the National Natural Science Foundation of China under Grant No. 10771206973 Project (2004CB318000) of China
文摘Hausdorff distance between two compact sets, defined as the maximum distance from a point of one set to another set, has many application in computer science. It is a good measure for the similarity of two sets. This paper proves that the shape distance between two compact sets in R^n defined by nfinimum Hausdorff distance under rigid motions is a distance. The authors introduce similarity comparison problems in protein science, and propose that this measure may have good application to comparison of protein structure as well. For calculation of this distance, the authors give one dimensional formulas for problems (2, n), (3, 3), and (3, 4). These formulas can reduce time needed for solving these problems. The authors did some data, this formula can reduce time needed to one As n increases, it would save more time. numerical experiments for (2, n). On these sets of fifteenth of the best algorithms known on average.
文摘Proteins perform a variety of functions in living organisms and their functions are largely determined by their shape. In this paper, we propose a novel mathematical method for designing protein-like molecules of a given shape. In the mathematical model, molecules are represented as loops of n-simplices (2-simplices are triangles and 3-simplices are tetrahedra). We design a new molecule of a given shape by patching together a set of smaller molecules that cover the shape. The covering set of small molecules is defined using a binary relation between sets of molecules. A new molecule is then obtained as a sum of the smaller molecules, where addition of molecules is defined using transformations acting on a set of (n + 1)-dimensional cones. Due to page limitations, only the two-dimensional case (i.e., loops of triangles) is considered. No prior knowledge of Sheaf Theory, Category Theory, or Protein Science is required. The author hopes that this paper will encourage further collaboration between Mathematics and Protein Science.
基金supported by the Key Scientific and Technological Research Projects of Henan Province (Grant No. 202102110133)Special Innovation Fund of Henan Agricultural University (Grant No. KJCX2019C04)。
文摘Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the quantity of original microorganisms in wheat flour produced by traditional method is relatively high, which is detrimental to the processing quality and storage stability of FWN. Consequently, it becomes imperative to decrease microorganisms in wheat flour. Microwave treatment has been regarded as a promising method in the food industry due to its potential in inhibiting microbial growth and inactivating enzymes without causing adverse effect on the food quality. This study aims to investigate the effects of microwave treatment of wheat kernels under different powers(1, 2, 3, 4, 5 kW) on the physicochemical properties of wheat flour and the quality of FWN. The results revealed that microwave treatment had a significant effect on microbial inhibition and enzyme inactivation, wherein the total plate count(TPC) and yeast and mold counts(YMC) decreased by 0.87 lg(CFU/g) and 1.13 lg(CFU/g) respectively, and PPO activity decreased from 11.40 U to 6.31 U. The dough quality properties, such as stability, extensibility, and starch viscosity, improved significantly under different microwave conditions. Confocal laser scanning microscopy(CLSM) images indicated that starch and proteins aggregated gradually in treated flour, altering rheological properties of dough. From the results of scanning electron microscopy(SEM), microwave treatment led to the appearance of disrupted structure in the gluten proteins, but the secondary structure of proteins altered slightly. Rheological properties of dough confirmed that the microwave treatment greatly affected processing characteristics of wheat flour products, with significant advantageous consequences on product quality, especially for textural properties of FWN. Furthermore, FWN darkening could be inhibited noticeably after microwave treatment, thereby prolonging its shelf life. Therefore, microwave treatment could thus be an effective, practical technology to produce low-bacterial flour and thereby enhance its product quality.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11175224 and 11121403)
文摘Protein sequences as special heterogeneous sequences are rare in the amino acid sequence space. The specific sequen- tial order of amino acids of a protein is essential to its 3D structure. On the whole, the correlation between sequence and structure of a protein is not so strong. How well would a protein sequence contain its structural information? How does a sequence determine its native structure? Keeping the globular proteins in mind, we discuss several problems from sequence to structure.
文摘The electronic structure of protein chains L and M in photosynthetic reaction center (PRC) of Rhodobacter sphaeroides (Van Niel) Imhoff, Truper et Pfennig) was studied by using the Overlapping Dimer Approximation method and the Extended Negative Factor Counter method at ab initio level. The result indicated that: (1) Amino acid residues, the molecular orbitals of which composed the main components of frontier orbitals of protein chain L (M), are located at the random coil areas of chain L (alpha helix areas of chain M). Since the random coil is flexible and more easy to change its conformation in the electron transfer process and to reduce the energy of the system, and the structure of the alpha helix is reletively stable, this difference might be one of the causes for the electron transfer in photosynthetic reaction center (PRC) only takes place along the L branch. (2) The His residues which axially coordinated to the 'special pair' P and accessory chlorophyll molecules (ABChls) are essentially important for the E-LUMO levels of P and ABChl. But, the corresponding molecular orbitals of these His residues do not appear in the composition of frontier orbitals of protein chains. It means that the interaction between pigment molecules and protein chains do not influence the contribution to the frontier orbitals of protein chains explicitly, but influences the corresponding E-LUMO levels significantly.
基金Supported by the Project for High-level Talents of Qinghai University (2008-QGC-7)~~
文摘[Objective] This study aimed to predict the structure of protein OmpH from Pasteurella multocida C47-8 (PmC47-8) strain of yak. [Method] Online BLAST, signal peptide prediction, secondary structure prediction and protein characteristics of sequencing result of gene OmpH from PmC47-8 strain were analyzed. [Result] The similarities of gene OmpH from PmC47-8 with the published 81 OmpH genes were between 84% and 99%; a signal peptide was found with the cleavage sites between 20 and 21 in the polypeptide; secondary structure prediction showed that folding structure accounted for 49.8% and loop structure for 50.2%; it predicted that there were 7 O-glycosylation sites in OmpH protein with the amino acid residual sites of 2, 45, 48, 330, 716, 721, 723, respectively, and 2 N-glycosylation sites with the amino acid residual sites of 15 and 35. [Conclusion] This study lays the foundation for the study on the immunity of OmpH gene from yak.
基金financially supported by Beijing Municipal Commission of Education Co-Constructed Programand Chinese Universities Scientific Fund(2009-4-25)
文摘Proteolysis is one of the most important biochemical reactions during cheese ripening.Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing cheese quality.Fourier transform infrared spectroscopy(FTIR),with self-deconvolution,second derivative analysis and band curve-fitting,was used to characterize the secondary structure of proteins in Cheddar cheese during ripening.The spectra of the amide I region showed great similarity,while the relative contents of the secondary structures underwent a series of changes.As ripening progressed,the α-helix content decreased and the β-sheet content increased.This structural shift was attributed to the strengthening of hydrogen bonds that resulted from hydrolysis of caseins.In summary,FTIR could provide the basis for rapid characterization of cheese that is undergoing ripening.
基金supported by the start-up grant from“Top 100 Talents Program”of Sun Yat-sen University to JRY(50000-31131114)General Program of National Natural Science Foundation of China to JRY(31671320)
文摘Currently many facets of genetic information are illdefined. In particular, how protein folding is genetically regulated has been a long-standing issue for genetics and protein biology. And a generic mechanistic model with supports of genomic data is still lacking. Recent technological advances have enabled much needed genome-wide experiments. While putting the effect of codon optimality on debate, these studies have supplied mounting evidence suggesting a role of m RNA structure in the regulation of protein folding by modulating translational elongation rate. In conjunctions with previous theories, this mechanistic model of protein folding guided by m RNA structure shall expand our understandings of genetic information and offer new insights into various biomedical puzzles.
文摘The aim of the present study was to assess whether Fourier transform infrared spectrometry (FTIR) micro-spectroscopy could produce distinct spectral information on protein of old myocardial infarction (OMI) and to set them as molecular markers to diagnose atypical OMI. Paraffin-embedded heart samples were derived from victims dying of OMI. In combination with histological stain, FTIR and infrared micro-spectroscopy, the characteristics of OMI were analyzed morphologically and molecularly. The most relevant bands identified were the amide A, B, Ⅰ and Ⅱ, showing crucial spectral differences between apparent normal region and OMI region, including the peak position blue shift and the increased intensity of OMI, moreover relative increase in α-helix and decrease in β-sheet of protein secondary structures in OMI. Comparing to single spectral band, the I1650/I1550 ratio was increased and rationally used as a molecular marker for diagnosing OMI. These novel preliminary findings supported further exploration of FTIR molecular profiling in clinical or forensic study, and were in accordance with histopathology.
基金Supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia,No.451-03-9/2021-14/200019.
文摘The liver is the site of synthesis of the majority of circulating proteins.Besides initial polypeptide synthesis,sophisticated machinery is involved in the further processing of proteins by removing parts of them and/or adding functional groups and small molecules tailoring the final molecule to suit its physiological purpose.Posttranslational modifications(PTMs)design a network of molecules with the common protein ancestor but with slightly or considerably varying activity/localization/purpose.PTMs can change under pathological conditions,giving rise to aberrant or overmodified proteins.Undesired changes in the structure of proteins most often accompany undesired changes in their function,such as reduced activity or the appearance of new effects.Proper protein processing is essential for the reactions in living beings and crucial for the overall quality control.Modifications that occur on proteins synthesized in the liver whose PTMs are cirrhosis-related are oxidation,nitration,glycosylation,acetylation,and ubiquitination.Some of them predominantly affect proteins that remain in liver cells,whereas others predominantly occur on proteins that leave the liver or originate from other tissues and perform their function in the circulation.Altered PTMs of certain proteins are potential candidates as biomarkers of liver-related diseases,including cirrhosis.This review will focus on PTMs on proteins whose structural changes in cirrhosis exert or are suspected to exert the most serious functional consequences.
基金Supported by research fund from Ministry of Education of China for Studying Abroad,No.[2000]479Natural Science Foundation of Guangdong Province,No.[2001]10-010371
文摘AIM: To construct the eukaryotic expression plasmid containing HCV NS3 segment and to analyze the expression of NS3 protein in normal human hepatocyte HL-7702.METHODS: We amplified HCV NS3 fragment from plasmid pBRTM/HCV 1-3011 containing the whole length of HCV genome, recombined it with expression vector pcDNA3.1(-) to form the eukaryotic expression vector pcDNA3.1(-)/NS3, and transfected human HL-7702 hepatocytes with the recombined plasmid by cationic polymers. The expressed HCV NS3 protein was detected and analyzed by immunohistochemical method and Western blot.RESULTS: The amplified NS3 fragments had correct molecule weight and sequence. The successfully constructed eukaryotic expression plasmids were transfected to HL-7702 cells. The expressed NS3 proteins had correct molecular weight 70000.CONCLUSION: Eukaryotic expression vector pcDNA3.1 (-)/NS3 containing NS3 segment of HCV can be constructed, the sequence of NS3 fragments is consistent with the template. Normal human HL-7702 hepatocytes can efficiently express specific HCV NS3 protein in vitro.
基金Supported by the National Natural Science Foundation of China(30170214)
文摘We introduced a new method---duration Hidden Markov Model (dHMM) to predicate the secondary structure of Protein. In our study, we divide the basic second structure of protein into three parts: H (a-Helix), E (B-sheet) and O (others, include coil and turn). HMM is a kind of probabilistic model which more thinking of the interaction between adjacent amino acids (these interaction were represented by transmit probability), and we use genetic algorithm to determine the model parameters. After improving on the model and fixed on the parameters of the model, we write a program HMMPS. Our example shows that HMM is a nice method for protein secondary structure prediction.
文摘The algorithm based on combination learning usually is superior to a singleclassification algorithm on the task of protein secondary structure prediction. However,the assignment of the weight of the base classifier usually lacks decision-makingevidence. In this paper, we propose a protein secondary structure prediction method withdynamic self-adaptation combination strategy based on entropy, where the weights areassigned according to the entropy of posterior probabilities outputted by base classifiers.The higher entropy value means a lower weight for the base classifier. The final structureprediction is decided by the weighted combination of posterior probabilities. Extensiveexperiments on CB513 dataset demonstrates that the proposed method outperforms theexisting methods, which can effectively improve the prediction performance.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2013CB910203 and 2011CB911104)the National Natural Science Foundation of China(Grant No.31270760)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB08030102)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20113402120013)
文摘Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an "integrative structural biology" approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and lowresolution experimental data using computer simulations. Small-angle x-ray scattering(SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin.
基金Funded by the Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201037)the Foundation for Talent Recruitment of Yancheng Institute of Technology (XKR2011007)"973" Chinese National Key Fundamental Research and Development Program (No.G1999064701)
文摘β-TCP, as one of calcium phosphates ceramics, exerts perfect biocompatibility and osteoconductivity, and is clinically used as a bone graft substitute for decades. Consequently, the effects of β-TCP ceramics on intracellular Ca2+ concentration, mineralization of osteoblast and BSA protein structure were studied. Results showed that β-TCP could increase the intracelluar Ca2+ concentration and mineralization of osteoblast, indicating that β-TCP ceramics could take part in the organic metabolism and the degradation product had no detrimental effect on osteoblast in vitro. Furthermore, β-TCP ceramics could increase the content of α-helix and β-pleated sheet and change BSA into more ordering structure, those changes might be favorable for the biomineralization after β-TCP ceramics implanted.
基金the National Natural Science Foundation of China(No.20475068) the Guangdong Provincial Natural Science Foundation(No.031577).
文摘Based on the concept of ant colony optimization and the idea of population in genetic algorithm, a novel global optimization algorithm, called the hybrid ant colony optimization (HACO), is proposed in this paper to tackle continuous-space optimization problems. It was compared with other well-known stochastic methods in the optimization of the benchmark functions and was also used to solve the problem of selecting appropriate dilation efficiently by optimizing the wavelet power spectrum of the hydrophobic sequence of protein, which is the key step on using continuous wavelet transform (CWT) to predict a-helices and connecting peptides.
文摘The secondary structure of a protein is critical for establishing a link between the protein primary and tertiary structures.For this reason,it is important to design methods for accurate protein secondary structure prediction.Most of the existing computational techniques for protein structural and functional prediction are based onmachine learning with shallowframeworks.Different deep learning architectures have already been applied to tackle protein secondary structure prediction problem.In this study,deep learning based models,i.e.,convolutional neural network and long short-term memory for protein secondary structure prediction were proposed.The input to proposed models is amino acid sequences which were derived from CulledPDB dataset.Hyperparameter tuning with cross validation was employed to attain best parameters for the proposed models.The proposed models enables effective processing of amino acids and attain approximately 87.05%and 87.47%Q3 accuracy of protein secondary structure prediction for convolutional neural network and long short-term memory models,respectively.