AIM: To study the effects of aminoguanidine (AG) and two L-arginine analogues N(omega)-nitro-L-arginine methyl ester (L-NAME) and N(omega)-nitro-L-arginine (L-NNA) on nitric oxide (NO) production induced by cytokines ...AIM: To study the effects of aminoguanidine (AG) and two L-arginine analogues N(omega)-nitro-L-arginine methyl ester (L-NAME) and N(omega)-nitro-L-arginine (L-NNA) on nitric oxide (NO) production induced by cytokines (TNF-alpha, IL-1 beta, and IFN-gamma) and bacterial lipopolysaccharide (LPS) mixture (CM) in the cultured rat hepatocytes, and examine their mechanisms action. METHODS: Rat hepatocytes were incubated with AG, L-NAME, L-NNA, Actinomycin D (ActD) and dexamethasone in a medium containing CM (LPS plus TNF-alpha, IL-1 beta, and IFN-gamma) for 24h. NO production in the cultured supernatant was measured with the Griess reaction. Intracellular cGMP level was detected with radioimmunoassy. RESULTS: NO production was markedly blocked by AG and L-NAME in a dose-dependent manner under inflammatory stimuli condition triggered by CM in vitro. The rate of the maximum inhibitory effects of L-NAME (38.9%) was less potent than that obtained with AG(53.7%, P 【 0.05). There was no significant difference between the inhibitory effects of AG and two L-arginine analogues on intracellular cGMP accumulation in rat cultured hepatocytes. Non-specific NOS expression inhibitor dexamethasone (DEX)and iNOS mRNA transcriptional inhibitor ActD also significantly inhibited CM-induced NO production. AG(0.1 mmol x L(-1)) and ActD (0.2 ng x L(-1)) were equipotent in decreasing NO production induced by inflammatory stimuli in vitro, and both effects were more potent than that induced by non-selectivity NOS activity inhibitor L-NAME (0.1 mmol x L(-1)) under similar stimuli conditions (P【0.01). CONCLUSION: AG is a potent selective inhibitor of inducible isoform of NOS,and the mechanism of action may be not only competitive inhibition in the substrate level, but also the gene expression level in rat hepatocytes.展开更多
A major problem which is poorly understood in the management of bladder cancer is low sensitivity to chemotherapy and high recurrence after transurethral resection. Insulin-like growth factor 1 receptor (IGF-1R) signa...A major problem which is poorly understood in the management of bladder cancer is low sensitivity to chemotherapy and high recurrence after transurethral resection. Insulin-like growth factor 1 receptor (IGF-1R) signaling plays a very important role in progression, invasion and metastasis of bladder cancer cells. In this study, we investigated whether IGF-1R was involved in the growth stimulating activity and drug resistance of bladder cancer cells. The results showed: The mRNAs of IGF-1, IGF-2 and IGF-1R were strongly expressed in serum-free cultured T24 cell line, whereas normal urothelial cells did not express these factors/receptors or only in trace levels; T24 cell responded far better to growth stimulation by IGF-1 than did normal urothelial cells; blockage of IGF1R by antisense oligodeoxynucleotide (ODN) significantly inhibited the growth of T24 cell and enhanced sensitivity and apoptosis of T24 cells to mitomycin (MMC). These results suggested that blockage of IGF-IR signaling might potentially contribute to the treatment of bladder cancer cells which are insensitive to chemotherapy.展开更多
基金Project supported by the National Natural Science Foundation of China,No.39770861.and JANSSEN Science Research Foundation.
文摘AIM: To study the effects of aminoguanidine (AG) and two L-arginine analogues N(omega)-nitro-L-arginine methyl ester (L-NAME) and N(omega)-nitro-L-arginine (L-NNA) on nitric oxide (NO) production induced by cytokines (TNF-alpha, IL-1 beta, and IFN-gamma) and bacterial lipopolysaccharide (LPS) mixture (CM) in the cultured rat hepatocytes, and examine their mechanisms action. METHODS: Rat hepatocytes were incubated with AG, L-NAME, L-NNA, Actinomycin D (ActD) and dexamethasone in a medium containing CM (LPS plus TNF-alpha, IL-1 beta, and IFN-gamma) for 24h. NO production in the cultured supernatant was measured with the Griess reaction. Intracellular cGMP level was detected with radioimmunoassy. RESULTS: NO production was markedly blocked by AG and L-NAME in a dose-dependent manner under inflammatory stimuli condition triggered by CM in vitro. The rate of the maximum inhibitory effects of L-NAME (38.9%) was less potent than that obtained with AG(53.7%, P 【 0.05). There was no significant difference between the inhibitory effects of AG and two L-arginine analogues on intracellular cGMP accumulation in rat cultured hepatocytes. Non-specific NOS expression inhibitor dexamethasone (DEX)and iNOS mRNA transcriptional inhibitor ActD also significantly inhibited CM-induced NO production. AG(0.1 mmol x L(-1)) and ActD (0.2 ng x L(-1)) were equipotent in decreasing NO production induced by inflammatory stimuli in vitro, and both effects were more potent than that induced by non-selectivity NOS activity inhibitor L-NAME (0.1 mmol x L(-1)) under similar stimuli conditions (P【0.01). CONCLUSION: AG is a potent selective inhibitor of inducible isoform of NOS,and the mechanism of action may be not only competitive inhibition in the substrate level, but also the gene expression level in rat hepatocytes.
文摘A major problem which is poorly understood in the management of bladder cancer is low sensitivity to chemotherapy and high recurrence after transurethral resection. Insulin-like growth factor 1 receptor (IGF-1R) signaling plays a very important role in progression, invasion and metastasis of bladder cancer cells. In this study, we investigated whether IGF-1R was involved in the growth stimulating activity and drug resistance of bladder cancer cells. The results showed: The mRNAs of IGF-1, IGF-2 and IGF-1R were strongly expressed in serum-free cultured T24 cell line, whereas normal urothelial cells did not express these factors/receptors or only in trace levels; T24 cell responded far better to growth stimulation by IGF-1 than did normal urothelial cells; blockage of IGF1R by antisense oligodeoxynucleotide (ODN) significantly inhibited the growth of T24 cell and enhanced sensitivity and apoptosis of T24 cells to mitomycin (MMC). These results suggested that blockage of IGF-IR signaling might potentially contribute to the treatment of bladder cancer cells which are insensitive to chemotherapy.