Targeting of the synthesized polypeptide in the cells is an important research field in modern cell biology. Cowpea trypsin inhibitor (cpti) gene has been modified and a fusion protein gene (sck) was produced by fusin...Targeting of the synthesized polypeptide in the cells is an important research field in modern cell biology. Cowpea trypsin inhibitor (cpti) gene has been modified and a fusion protein gene (sck) was produced by fusing a signal peptide sequence at cpti 5' end and an endoplasm reticulum (ER) retention signal peptide at cpti3' end respectively. The signal peptide can direct the newly synthesized polypeptide into ER, while ER retention signal can make the protein retained in the ER and its derivative protein body. ELISA test indicated that the accumulation level of foreign CpTI protein in sck transgenic tobacco (Nicotiana tabacum L.) was two times higher than cpti transgenic tobaccos and some individuals were four times higher. At the same time, sck transgenic tobacco has a high resistance to Lepidoptera pest due to the increased accumulation level of foreign CpTI protein. The strategy of foreign protein targeting can be used to increase the accumulation level of foreign protein in transgenic plants and can be widely applied to other related research field in plant genetic engineering.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect...BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.展开更多
Objective: The mortality and morbidity rates associated with pancreatic cancer (PaCa) are extremely high. Various studies have demonstrated that pancreatic cancer will be the fourth cancer-related death by 2030, raisi...Objective: The mortality and morbidity rates associated with pancreatic cancer (PaCa) are extremely high. Various studies have demonstrated that pancreatic cancer will be the fourth cancer-related death by 2030, raising more concern for scholars to find effective methods to prevent and treat in order to improve the pancreatic cancer outcome. Using bioinformatic analysis, this study aims to pinpoint key genes that could impact PaCa patients’ prognosis and could be used as therapeutic targets. Methods: The TCGA and GEO datasets were integratively analyzed to identify prognosis-related differentially expressed genes. Next, the STRING database was used to develop PPI networks, and the MCODE and CytoNCA Cytoscape in Cytoscape were used to screen for critical genes. Through CytoNCA, three kinds of topology analysis were considered (degree, betweenness, and eigenvector). Essential genes were confirmed as potential target treatment through Go function and pathways enrichment analysis, a developed predictive risk model based on multivariate analysis, and the establishment of nomograms using the clinical information. Results: Overall, the GSE183795 and TCGA datasets associated 1311 and 2244 genes with pancreatic cancer prognosis, respectively. We identified 132 genes that were present in both datasets. The PPI network analysis using, the centrality analysis approach with the CytoNCA plug-in, showed that CDK2, PLK1, CCNB1, and TOP2A ranked in the top 5% across all three metrics. The independent analysis of a risk model revealed that the four key genes had a Hazard Ratio (HR) > 1. The monogram showed the predictive risk model and individual patient survival predictions were accurate. The results indicate that the effect of the selected vital genes was significant and that they could be used as biomarkers to predict a patient’s outcome and as possible target therapy in patients with pancreatic cancer. GO function and pathway analysis demonstrated that crucial genes might affect the P53 signaling pathway and FoxO signaling pathway, through which Meiotic nuclear division and cell cycle may have a significant function in essential genes affecting the outcome of patients who have pancreatic cancer. Conclusions: This study suggests that CDK2, CCNB1, PLK1 and TOP2A are four key genes that have a significant influence on PaCa migration and proliferation. CDK2, CCNB1, PLK1, and TOP2A can be used as potential PaCa prognostic biomarkers and therapeutic targets. However, experimental validation is necessary to confirm these predictions. Our study comes into contributions to the development of personalized target therapy for pancreatic cancer patients.展开更多
Overall 5-years survival of pancreatic cancer patients is nearly 5%,making this cancer type one of the most lethal neoplasia.Furthermore,the incidence rate of pancreatic cancer has a growing trend that determines a co...Overall 5-years survival of pancreatic cancer patients is nearly 5%,making this cancer type one of the most lethal neoplasia.Furthermore,the incidence rate of pancreatic cancer has a growing trend that determines a constant increase in the number of deceases caused by this pathology.The poor prognosis of pancreatic cancer is mainly caused by delayed diagnosis,early metastasis of tumor,and resistance to almost all tested cytotoxic drugs.In this respect,the identification of novel potential targets for new and efficient therapies should be strongly encouraged in order to improve the clinical management of pancreatic cancer.Some studies have shown that the mitochondrial uncoupling protein 2(UCP2) is over-expressed in pancreatic cancer as compared to adjacent normal tissues.In addition,recent discoveries established a key role of UCP2 in protecting cancer cells from an excessive production of mitochondrial superoxide ions and in the promotion of cancer cell metabolic reprogramming,including aerobic glycolysis stimulation,promotion of cancer progression.These observations together with the demonstration that UCP2 repression can synergize with standard chemotherapy to inhibit pancreatic cancer cell growth provide the molecular rationale to consider UCP2 as a potential therapeutic target for pancreatic cancer.In this editorial,recent advances describing the relationship between cancer development and mitochondrial UCP2 activity are critically provided.展开更多
BACKGROUND The phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin(PI3K/Akt/mTOR) signalling pathway is crucial for cell survival, differentiation, apoptosis and metabolism. Xihuang pills(XHP) a...BACKGROUND The phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin(PI3K/Akt/mTOR) signalling pathway is crucial for cell survival, differentiation, apoptosis and metabolism. Xihuang pills(XHP) are a traditional Chinese preparation with antitumour properties. They inhibit the growth of breast cancer, glioma, and other tumours by regulating the PI3K/Akt/mTOR signalling pathway. However, the effects and mechanisms of action of XHP in hepatocellular carcinoma(HCC) remain unclear. Regulation of the PI3K/Akt/mTOR signalling pathway effectively inhibits the progression of HCC. However, no study has focused on the XHPassociated PI3K/Akt/mTOR signalling pathway. Therefore, we hypothesized that XHP might play a role in inhibiting HCC through the PI3K/Akt/mTOR signalling pathway.AIM To confirm the effect of XHP on HCC and the possible mechanisms involved.METHODS The chemical constituents and active components of XHP were analysed using ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry(UPLC-Q-TOF-MS). Cellbased experiments and in vivo xenograft tumour experiments were utilized to evaluate the effect of XHP on HCC tumorigenesis. First, SMMC-7721 cells were incubated with different concentrations of XHP(0, 0.3125, 0.625, 1.25, and 2.5 mg/mL) for 12 h, 24 h and 48 h. Cell viability was assessed using the CCK-8 assay, followed by an assessment of cell migration using a wound healing assay.Second, the effect of XHP on the apoptosis of SMMC-7721 cells was evaluated. SMMC-7721 cells were stained with fluorescein isothiocyanate and annexin V/propidium iodide. The number of apoptotic cells and cell cycle distribution were measured using flow cytometry. The cleaved protein and mRNA expression levels of caspase-3 and caspase-9 were detected using Western blotting and quantitative reverse-transcription polymerase chain reaction(RT-qPCR), respectively.Third, Western blotting and RT–qPCR were performed to confirm the effects of XHP on the protein and mRNA expression of components of the PI3K/Akt/mTOR signalling pathway.Finally, the effects of XHP on the tumorigenesis of subcutaneous hepatocellular tumours in nude mice were assessed.RESULTS The following 12 compounds were identified in XHP using high-resolution mass spectrometry:Valine, 4-gingerol, myrrhone, ricinoleic acid, glycocholic acid, curzerenone, 11-keto-β-boswellic acid, oleic acid, germacrone, 3-acetyl-9,11-dehydro-β-boswellic acid, 5β-androstane-3,17-dione, and 3-acetyl-11-keto-β-boswellic acid. The cell viability assay results showed that treatment with 0.625mg/mL XHP extract decreased HCC cell viability after 12 h, and the effects were dose-and timedependent. The results of the cell scratch assay showed that the migration of HCC cells was significantly inhibited in a time-dependent manner by the administration of XHP extract(0.625mg/mL). Moreover, XHP significantly inhibited cell migration and resulted in cell cycle arrest and apoptosis. Furthermore, XHP downregulated the PI3K/Akt/mTOR signalling pathway, which activated apoptosis executioner proteins(e.g., caspase-9 and caspase-3). The inhibitory effects of XHP on HCC cell growth were determined in vivo by analysing the tumour xenograft volumes and weights.CONCLUSION XHP inhibited HCC cell growth and migration by stimulating apoptosis via the downregulation of the PI3K/Akt/mTOR signalling pathway, followed by the activation of caspase-9 and caspase-3.Our findings clarified that the antitumour effects of XHP on HCC cells are mediated by the PI3K/Akt/mTOR signalling pathway, revealing that XHP may be a potential complementary therapy for HCC.展开更多
According to our previous study, saprophytic fungi Botrytis cinerea contained 579 predicted secretary proteins. Among them, we found that 122 of these proteins contained the highly conserved pathogenic-related host-ta...According to our previous study, saprophytic fungi Botrytis cinerea contained 579 predicted secretary proteins. Among them, we found that 122 of these proteins contained the highly conserved pathogenic-related host-targeting-motif RxLx within 100 residues adjacent to the signal peptide cleavage site. According to PEDNAT and COG of the GenBank database, the functions of this motif containing proteins included metabolism modification and cell secretion. We blasted them in GenBank and found 47.54% had highly conserved homologues in other species, among them 74.1% had putative functional domains. This suggests these proteins are presumably ancient and vertically transmitted within the species. Many of these domains belonged to proteins which played roles in the pathogenic process of other kinds of pathogens and some had already been proved to be pathogenic secretary proteins of Botrytis cinerea. So we postulated that proteins contained host-targeting-motif RxLx were candidates participating in the pathogenesis of Botrytis cinerea.展开更多
Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation...Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation(e.g.,Parkinson’s disease:α-synuclein;Huntington’s disease:Huntingtin;展开更多
Prematurely born newborns,as well as those born at term,may suffer from several types of brain injury including hypoxic-ischemic injury,intracranial hemorrhage,both intraventricular and parenchymal,and injury that is ...Prematurely born newborns,as well as those born at term,may suffer from several types of brain injury including hypoxic-ischemic injury,intracranial hemorrhage,both intraventricular and parenchymal,and injury that is the consequence of intrauterine growth restriction(IUGR).Injury of all types can impact the motor and cognitive abilities of survivors.The mechanisms leading to disability are not completely understood.展开更多
Fusarium head blight (FHB) is a destructive disease of wheat and other cereals. FHB occurs in Europe, North America and around the world causing significant losses in production and endangers human and animal health. ...Fusarium head blight (FHB) is a destructive disease of wheat and other cereals. FHB occurs in Europe, North America and around the world causing significant losses in production and endangers human and animal health. In this article, we provide the strategic steps for the specific target selection for the phytopathogen system wheat-Fusarium graminearum. The economic impact of FHB leads to the need for innovation. Currently used fungicides have been shown to be effective over the years, but recently cereal infecting Fusaria have developed resistance. Our work presents a new perspective on target selection to allow the development of new fungicides. We developed an innovative approach combining both genomic analysis and molecular modeling to increase the discovery for new chemical compounds with both safety and low environmental impact. Our protein targets selection revealed 13 candidates with high specificity, essentiality and potentially assayable with a favorable accessibility to drug activity. Among them, three proteins: trichodiene synthase, endoglucanase-5 and ERG6 were selected for deeper structural analyses to identify new putative fungicides. Overall, the bioinformatics filtering for novel protein targets applied for agricultural purposes is a response to the demand for chemical crop protection. The availability of the genome, secretome and PHI-base allowed the enrichment of the search that combined experimental data in planta. The homology modeling and molecular dynamics simulations allowed the acquisition of three robust and stable conformers. From this step, approximately ten thousand compounds have been virtually screened against three candidates. Forty-five top-ranked compounds were selected from docking results as presenting better interactions and energy at the binding pockets and no toxicity. These compounds may act as inhibitors and lead to the development of new fungicides.展开更多
Soft-shelled turtle, Pelodiscus sinensis is important aquatic species in China, and searching for alternatives protein resources to fish meal (FM)-based feeds in feed has become urgent and important for its sustainabi...Soft-shelled turtle, Pelodiscus sinensis is important aquatic species in China, and searching for alternatives protein resources to fish meal (FM)-based feeds in feed has become urgent and important for its sustainability development. The present study was conducted to assess the effects of dietary soy protein concentrate (SPC) on growth, digestive enzymes and target of rapamycin (TOR) signaling pathway of juvenile P. sinensis (4.56 ± 0.09 g). SPC was applied to replace FM protein at 0%, 15%, 30% and 60% (designated as T0, T15, T30 and T60, respectively), and each diet was fed to triplicate groups. The results showed that there was no significant difference in growth performance and feed utilization except of the turtles fed with T60 diet, of which showed poorer daily weight gain and feed conversion rate. The pepsin/trypsin and Na+-K+ ATP-ase activities decreased dramatically when SPC level increased, and lipase activities in liver and intestinal tract also showed decline tendency. However, amylase activities were unaffected. No significant differences were observed in TOR, S6K1 and 4E-BP1 genes mRNA expression level of TOR signaling pathway among the treatments. However, the relative phosphorylated level of these proteins decreased significantly when SPC level increased. The present study indicated that high SPC substitution level would suppress digestive enzymes and TOR signaling pathway proteins phosphorylated level and eventually result in growth reduction of P. sinensis.展开更多
Objective:To identify novel drug targets for treatment of Plasmodium falciparum.Methods: Local BT.ASTP were used to find the proteins non-homologous to human essential proteins as novel drug targets.Functional domains...Objective:To identify novel drug targets for treatment of Plasmodium falciparum.Methods: Local BT.ASTP were used to find the proteins non-homologous to human essential proteins as novel drug targets.Functional domains of novel drug targets were identified by InterPro and Pfam.3D structures of potential drug targets were predicated by the SWISS-MODEL workspace. Ligands and ligand-binding sites of the proteins were searched by Ef-seek.Results:Three essential proteins were identified that might be considered as potential drug targets.AAN37254.1 belonged to 1-deoxy-D-xylulose 5-phosphate reductoisomerase,CAD50499.1 belonged to chorismale synthase,CAD51220.1 belonged to FAD binging 3 family,but the function of CAD51220.1 was unknown.The 3D structures,ligands and ligand-binding sites of AAM37254.1 and CAD50499.1 were successfully predicated.Conclusions:Two of these potential drug targets are key enzymes in 2-C-methyl-d-erythritol 4-phosphate pathway and shikimate pathway, which are absent in humans,so these two essential proteins are good potential drug targets.The function and 3D structures of CAD50499.1 is still unknown,it still need further study.展开更多
文摘Targeting of the synthesized polypeptide in the cells is an important research field in modern cell biology. Cowpea trypsin inhibitor (cpti) gene has been modified and a fusion protein gene (sck) was produced by fusing a signal peptide sequence at cpti 5' end and an endoplasm reticulum (ER) retention signal peptide at cpti3' end respectively. The signal peptide can direct the newly synthesized polypeptide into ER, while ER retention signal can make the protein retained in the ER and its derivative protein body. ELISA test indicated that the accumulation level of foreign CpTI protein in sck transgenic tobacco (Nicotiana tabacum L.) was two times higher than cpti transgenic tobaccos and some individuals were four times higher. At the same time, sck transgenic tobacco has a high resistance to Lepidoptera pest due to the increased accumulation level of foreign CpTI protein. The strategy of foreign protein targeting can be used to increase the accumulation level of foreign protein in transgenic plants and can be widely applied to other related research field in plant genetic engineering.
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.
文摘Objective: The mortality and morbidity rates associated with pancreatic cancer (PaCa) are extremely high. Various studies have demonstrated that pancreatic cancer will be the fourth cancer-related death by 2030, raising more concern for scholars to find effective methods to prevent and treat in order to improve the pancreatic cancer outcome. Using bioinformatic analysis, this study aims to pinpoint key genes that could impact PaCa patients’ prognosis and could be used as therapeutic targets. Methods: The TCGA and GEO datasets were integratively analyzed to identify prognosis-related differentially expressed genes. Next, the STRING database was used to develop PPI networks, and the MCODE and CytoNCA Cytoscape in Cytoscape were used to screen for critical genes. Through CytoNCA, three kinds of topology analysis were considered (degree, betweenness, and eigenvector). Essential genes were confirmed as potential target treatment through Go function and pathways enrichment analysis, a developed predictive risk model based on multivariate analysis, and the establishment of nomograms using the clinical information. Results: Overall, the GSE183795 and TCGA datasets associated 1311 and 2244 genes with pancreatic cancer prognosis, respectively. We identified 132 genes that were present in both datasets. The PPI network analysis using, the centrality analysis approach with the CytoNCA plug-in, showed that CDK2, PLK1, CCNB1, and TOP2A ranked in the top 5% across all three metrics. The independent analysis of a risk model revealed that the four key genes had a Hazard Ratio (HR) > 1. The monogram showed the predictive risk model and individual patient survival predictions were accurate. The results indicate that the effect of the selected vital genes was significant and that they could be used as biomarkers to predict a patient’s outcome and as possible target therapy in patients with pancreatic cancer. GO function and pathway analysis demonstrated that crucial genes might affect the P53 signaling pathway and FoxO signaling pathway, through which Meiotic nuclear division and cell cycle may have a significant function in essential genes affecting the outcome of patients who have pancreatic cancer. Conclusions: This study suggests that CDK2, CCNB1, PLK1 and TOP2A are four key genes that have a significant influence on PaCa migration and proliferation. CDK2, CCNB1, PLK1, and TOP2A can be used as potential PaCa prognostic biomarkers and therapeutic targets. However, experimental validation is necessary to confirm these predictions. Our study comes into contributions to the development of personalized target therapy for pancreatic cancer patients.
基金Supported by grants from Associazione Italiana Ricerca Cancro,Milan,ItalyFondazione Cari Pa Ro,Padova,ItalyMinistero dell’Istruzione,dell’Universitàe della Ricerca,Rome,Italy
文摘Overall 5-years survival of pancreatic cancer patients is nearly 5%,making this cancer type one of the most lethal neoplasia.Furthermore,the incidence rate of pancreatic cancer has a growing trend that determines a constant increase in the number of deceases caused by this pathology.The poor prognosis of pancreatic cancer is mainly caused by delayed diagnosis,early metastasis of tumor,and resistance to almost all tested cytotoxic drugs.In this respect,the identification of novel potential targets for new and efficient therapies should be strongly encouraged in order to improve the clinical management of pancreatic cancer.Some studies have shown that the mitochondrial uncoupling protein 2(UCP2) is over-expressed in pancreatic cancer as compared to adjacent normal tissues.In addition,recent discoveries established a key role of UCP2 in protecting cancer cells from an excessive production of mitochondrial superoxide ions and in the promotion of cancer cell metabolic reprogramming,including aerobic glycolysis stimulation,promotion of cancer progression.These observations together with the demonstration that UCP2 repression can synergize with standard chemotherapy to inhibit pancreatic cancer cell growth provide the molecular rationale to consider UCP2 as a potential therapeutic target for pancreatic cancer.In this editorial,recent advances describing the relationship between cancer development and mitochondrial UCP2 activity are critically provided.
基金Supported by National Natural Science Foundation of China, No. U20A20408 and No. 82074450Natural Science Foundation of Hunan Province, No. 2020JJ4066+4 种基金Hunan Province"Domestic First-class Cultivation Discipline"Integrated Traditional Chinese and Western Medicine Open Fund Project, No. 2020ZXYJH34 and No. 2020ZXYJH35Hunan Graduate Scientific Research Innovation Project, No. QL20210173 and No. CX20210730Hunan Province Science and Technology Innovation Talents Plan College Students Science and Technology Innovation and Entrepreneurship Project, No. 2020RC1004Guangzhou Health Science and Technology Project, No. 20221A011102Hunan Traditional Chinese Medicine Scientific Research Project, No. 202101
文摘BACKGROUND The phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin(PI3K/Akt/mTOR) signalling pathway is crucial for cell survival, differentiation, apoptosis and metabolism. Xihuang pills(XHP) are a traditional Chinese preparation with antitumour properties. They inhibit the growth of breast cancer, glioma, and other tumours by regulating the PI3K/Akt/mTOR signalling pathway. However, the effects and mechanisms of action of XHP in hepatocellular carcinoma(HCC) remain unclear. Regulation of the PI3K/Akt/mTOR signalling pathway effectively inhibits the progression of HCC. However, no study has focused on the XHPassociated PI3K/Akt/mTOR signalling pathway. Therefore, we hypothesized that XHP might play a role in inhibiting HCC through the PI3K/Akt/mTOR signalling pathway.AIM To confirm the effect of XHP on HCC and the possible mechanisms involved.METHODS The chemical constituents and active components of XHP were analysed using ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry(UPLC-Q-TOF-MS). Cellbased experiments and in vivo xenograft tumour experiments were utilized to evaluate the effect of XHP on HCC tumorigenesis. First, SMMC-7721 cells were incubated with different concentrations of XHP(0, 0.3125, 0.625, 1.25, and 2.5 mg/mL) for 12 h, 24 h and 48 h. Cell viability was assessed using the CCK-8 assay, followed by an assessment of cell migration using a wound healing assay.Second, the effect of XHP on the apoptosis of SMMC-7721 cells was evaluated. SMMC-7721 cells were stained with fluorescein isothiocyanate and annexin V/propidium iodide. The number of apoptotic cells and cell cycle distribution were measured using flow cytometry. The cleaved protein and mRNA expression levels of caspase-3 and caspase-9 were detected using Western blotting and quantitative reverse-transcription polymerase chain reaction(RT-qPCR), respectively.Third, Western blotting and RT–qPCR were performed to confirm the effects of XHP on the protein and mRNA expression of components of the PI3K/Akt/mTOR signalling pathway.Finally, the effects of XHP on the tumorigenesis of subcutaneous hepatocellular tumours in nude mice were assessed.RESULTS The following 12 compounds were identified in XHP using high-resolution mass spectrometry:Valine, 4-gingerol, myrrhone, ricinoleic acid, glycocholic acid, curzerenone, 11-keto-β-boswellic acid, oleic acid, germacrone, 3-acetyl-9,11-dehydro-β-boswellic acid, 5β-androstane-3,17-dione, and 3-acetyl-11-keto-β-boswellic acid. The cell viability assay results showed that treatment with 0.625mg/mL XHP extract decreased HCC cell viability after 12 h, and the effects were dose-and timedependent. The results of the cell scratch assay showed that the migration of HCC cells was significantly inhibited in a time-dependent manner by the administration of XHP extract(0.625mg/mL). Moreover, XHP significantly inhibited cell migration and resulted in cell cycle arrest and apoptosis. Furthermore, XHP downregulated the PI3K/Akt/mTOR signalling pathway, which activated apoptosis executioner proteins(e.g., caspase-9 and caspase-3). The inhibitory effects of XHP on HCC cell growth were determined in vivo by analysing the tumour xenograft volumes and weights.CONCLUSION XHP inhibited HCC cell growth and migration by stimulating apoptosis via the downregulation of the PI3K/Akt/mTOR signalling pathway, followed by the activation of caspase-9 and caspase-3.Our findings clarified that the antitumour effects of XHP on HCC cells are mediated by the PI3K/Akt/mTOR signalling pathway, revealing that XHP may be a potential complementary therapy for HCC.
基金Supported by Project of Kunming University (YJL11014)
文摘According to our previous study, saprophytic fungi Botrytis cinerea contained 579 predicted secretary proteins. Among them, we found that 122 of these proteins contained the highly conserved pathogenic-related host-targeting-motif RxLx within 100 residues adjacent to the signal peptide cleavage site. According to PEDNAT and COG of the GenBank database, the functions of this motif containing proteins included metabolism modification and cell secretion. We blasted them in GenBank and found 47.54% had highly conserved homologues in other species, among them 74.1% had putative functional domains. This suggests these proteins are presumably ancient and vertically transmitted within the species. Many of these domains belonged to proteins which played roles in the pathogenic process of other kinds of pathogens and some had already been proved to be pathogenic secretary proteins of Botrytis cinerea. So we postulated that proteins contained host-targeting-motif RxLx were candidates participating in the pathogenesis of Botrytis cinerea.
文摘Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation(e.g.,Parkinson’s disease:α-synuclein;Huntington’s disease:Huntingtin;
文摘Prematurely born newborns,as well as those born at term,may suffer from several types of brain injury including hypoxic-ischemic injury,intracranial hemorrhage,both intraventricular and parenchymal,and injury that is the consequence of intrauterine growth restriction(IUGR).Injury of all types can impact the motor and cognitive abilities of survivors.The mechanisms leading to disability are not completely understood.
文摘Fusarium head blight (FHB) is a destructive disease of wheat and other cereals. FHB occurs in Europe, North America and around the world causing significant losses in production and endangers human and animal health. In this article, we provide the strategic steps for the specific target selection for the phytopathogen system wheat-Fusarium graminearum. The economic impact of FHB leads to the need for innovation. Currently used fungicides have been shown to be effective over the years, but recently cereal infecting Fusaria have developed resistance. Our work presents a new perspective on target selection to allow the development of new fungicides. We developed an innovative approach combining both genomic analysis and molecular modeling to increase the discovery for new chemical compounds with both safety and low environmental impact. Our protein targets selection revealed 13 candidates with high specificity, essentiality and potentially assayable with a favorable accessibility to drug activity. Among them, three proteins: trichodiene synthase, endoglucanase-5 and ERG6 were selected for deeper structural analyses to identify new putative fungicides. Overall, the bioinformatics filtering for novel protein targets applied for agricultural purposes is a response to the demand for chemical crop protection. The availability of the genome, secretome and PHI-base allowed the enrichment of the search that combined experimental data in planta. The homology modeling and molecular dynamics simulations allowed the acquisition of three robust and stable conformers. From this step, approximately ten thousand compounds have been virtually screened against three candidates. Forty-five top-ranked compounds were selected from docking results as presenting better interactions and energy at the binding pockets and no toxicity. These compounds may act as inhibitors and lead to the development of new fungicides.
文摘Soft-shelled turtle, Pelodiscus sinensis is important aquatic species in China, and searching for alternatives protein resources to fish meal (FM)-based feeds in feed has become urgent and important for its sustainability development. The present study was conducted to assess the effects of dietary soy protein concentrate (SPC) on growth, digestive enzymes and target of rapamycin (TOR) signaling pathway of juvenile P. sinensis (4.56 ± 0.09 g). SPC was applied to replace FM protein at 0%, 15%, 30% and 60% (designated as T0, T15, T30 and T60, respectively), and each diet was fed to triplicate groups. The results showed that there was no significant difference in growth performance and feed utilization except of the turtles fed with T60 diet, of which showed poorer daily weight gain and feed conversion rate. The pepsin/trypsin and Na+-K+ ATP-ase activities decreased dramatically when SPC level increased, and lipase activities in liver and intestinal tract also showed decline tendency. However, amylase activities were unaffected. No significant differences were observed in TOR, S6K1 and 4E-BP1 genes mRNA expression level of TOR signaling pathway among the treatments. However, the relative phosphorylated level of these proteins decreased significantly when SPC level increased. The present study indicated that high SPC substitution level would suppress digestive enzymes and TOR signaling pathway proteins phosphorylated level and eventually result in growth reduction of P. sinensis.
基金supported by Science and Technology Innovation Fund of Guangdong Medical College(No.STIF 201107)
文摘Objective:To identify novel drug targets for treatment of Plasmodium falciparum.Methods: Local BT.ASTP were used to find the proteins non-homologous to human essential proteins as novel drug targets.Functional domains of novel drug targets were identified by InterPro and Pfam.3D structures of potential drug targets were predicated by the SWISS-MODEL workspace. Ligands and ligand-binding sites of the proteins were searched by Ef-seek.Results:Three essential proteins were identified that might be considered as potential drug targets.AAN37254.1 belonged to 1-deoxy-D-xylulose 5-phosphate reductoisomerase,CAD50499.1 belonged to chorismale synthase,CAD51220.1 belonged to FAD binging 3 family,but the function of CAD51220.1 was unknown.The 3D structures,ligands and ligand-binding sites of AAM37254.1 and CAD50499.1 were successfully predicated.Conclusions:Two of these potential drug targets are key enzymes in 2-C-methyl-d-erythritol 4-phosphate pathway and shikimate pathway, which are absent in humans,so these two essential proteins are good potential drug targets.The function and 3D structures of CAD50499.1 is still unknown,it still need further study.