BACKGROUND Colorectal cancer(CRC)causes many deaths worldwide.Synaptotagmin binding cytoplasmic RNA interacting protein(SYNCRIP)is an RNA-binding protein that plays an important role in multiple cancers by epigenetica...BACKGROUND Colorectal cancer(CRC)causes many deaths worldwide.Synaptotagmin binding cytoplasmic RNA interacting protein(SYNCRIP)is an RNA-binding protein that plays an important role in multiple cancers by epigenetically targeting some genes.Our study will examine the expression,potential effect,biological function and clinical value of SYNCRIP in CRC.AIM To examine the expression,potential effect,biological function and clinical value METHODS The expression of SYNCRIP was examined by immunohistochemistry arrays and high-throughput data.The effect of SYNCRIP gene in CRC cell growth was evaluated by CRISPR-Cas9 technology.The target genes of SYNCRIP were calculated using various algorithms,and the molecular mechanism of SYNCRIP in CRC was explored by mutation analysis and pathway analysis.The clinical value of SYNCRIP in prognosis and radiotherapy was revealed via evidence-based medicine methods.RESULTS The protein and mRNA levels of SYNCRIP were both highly expressed in CRC samples compared to nontumorous tissue based on 330 immunohistochemistry arrays and 3640 CRC samples.Cells grew more slowly in eleven CRC cell lines after knocking out the SYNCRIP gene.SYNCRIP could epigenetically target genes to promote the occurrence and development of CRC by boosting the cell cycle and affecting the tumor microenvironment.In addition,CRC patients with high SYNCRIP expression are more sensitive to radiotherapy.CONCLUSION SYNCRIP is upregulated in CRC,and highly expressed SYNCRIP can accelerate CRC cell division by exerting its epigenetic regulatory effects.In addition,SYNCRIP is expected to become a potential biomarker to predict the effect of radiotherapy.展开更多
Background:To develop a protein-protein interaction network of Paroxysmal nocturnal hemoglobinuria(PNH)and Aplastic anemia(AA)based on genetic genes and to predict pathways underlying the molecular complexes in the ne...Background:To develop a protein-protein interaction network of Paroxysmal nocturnal hemoglobinuria(PNH)and Aplastic anemia(AA)based on genetic genes and to predict pathways underlying the molecular complexes in the network.Methods:In this research,the PNH and AA-related genes were screened through Online Mendelian Inheritance in Man(OMIM).The plugins and Cytoscape were used to search literature and build a protein-protein interaction network.Results:The protein-protein interaction network contains two molecular complexes that are five higher than the correlation integral values.The target genes of this study were obtained:CD59,STAT3,TERC,TNF,AKT1,C5AR1,EPO,IL6,IL10 and so on.We also found that many factors regulate biological behaviors:neutrophils,macrophages,vascular endothelial growth factor,immunoglobulin,interleukin,cytokine receptor,interleukin-6 receptor,tumor necrosis factor,and so on.This research provides a bioinformatics foundation for further explaining the mechanism of common development of both.Conclusion:This indicates that the PNH and AA is a complex process regulated by many cellular pathways and multiple genes.展开更多
The B-box(BBX)family of proteins consists of zinc-finger transcription factors with one or two highly conserved B-box motifs at their N-termini.BBX proteins play crucial roles in various aspects of plant growth and de...The B-box(BBX)family of proteins consists of zinc-finger transcription factors with one or two highly conserved B-box motifs at their N-termini.BBX proteins play crucial roles in various aspects of plant growth and development,including seedling photomorphogenesis,shade avoidance,flowering time,and biotic and abiotic stress responses.Previous studies have identified many different BBXs from several plant species,although the BBX family members in maize are largely unknown.Genome-wide identification and comprehensive analysis of maize BBX(ZmBBX)expression and interaction networks would therefore provide valuable information for understanding their functions.In this study,36 maize BBXs in three major clades were identified.The ZmBBXs within a given clade were found to share similar domains,motifs,and genomic structures.Gene duplication analyses revealed that the expansion of BBX proteins in maize has mainly occurred by segmental duplication.The expression levels of ZmBBXs were analyzed in various organs and tissues,and under different abiotic stress conditions.Protein–protein interaction networks of ZmBBXs were established using bioinformatic tools and verified by bimolecular fluorescence complementation(BiFC)assays.Our findings can facilitate a greater understanding of the complexity of the ZmBBX family and provide novel clues for unravelling ZmBBX protein functions.展开更多
Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,...Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive.In this study,we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer.Our findings revealed that hydrophilic bases,specifically G in single-stranded RNA(ssRNA)and single-stranded DNA(ssDNA),displayed a higher propensity to form hydrogen bonds with phospholipid head groups.Notably,ssRNA exhibited stronger binding energy than ssDNA.Furthermore,divalent ions,particularly Ca2+,facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids.Overall,our study provides valuable insights into the molecular mechanisms underlying nucleic acidphospholipid interactions,with potential implications for the nucleic acids in biotherapies,particularly in the context of lipid carriers.展开更多
Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose an...Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose and lignin.To dissect the roles of hemicellulosic polysaccharides during fiber development,four IRREGULAR XYLEM 15(IRX15)genes,GhIRX15-1/-2/-3/-4,were functionally characterized in cotton.These genes encode DUF579 domain-containing proteins,which are homologs of AtIRX15 involved in xylan biosynthesis.The four GhIRX15 genes were predominantly expressed during fiber secondary wall thickening,and the encoded proteins were localized to the Golgi apparatus.Each GhIRX15 gene could restore the xylan deficient phenotype in the Arabidopsis irx15irx15l double mutant.Silencing of GhIRX15s in cotton resulted in shorter mature fibers with a thinner cell wall and reduced cellulose content as compared to the wild type.Intriguingly,GhIRX15-2 and GhIRX15-4 formed homodimers and heterodimers.In addition,the GhIRX15s showed physical interaction with glycosyltransferases GhGT43C,GhGT47A and GhGT47B,which are responsible for synthesis of the xylan backbone and reducing end sequence.Moreover,the GhIRX15s can form heterocomplexes with enzymes involved in xylan modification and side chain synthesis,such as GhGUX1/2,GhGXM1/2 and GhTBL1.These findings suggest that GhIRX15s participate in fiber xylan biosynthesis and modulate fiber development via forming large multiprotein complexes.展开更多
Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understan...Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.展开更多
Objectives To identify the 5'untranslated region of Zika virus(ZIKV 5'UTR)RNA-binding proteins and to investigate the impact of the binding protein on the activity of internal ribosomal entry site(IRES)located...Objectives To identify the 5'untranslated region of Zika virus(ZIKV 5'UTR)RNA-binding proteins and to investigate the impact of the binding protein on the activity of internal ribosomal entry site(IRES)located in ZIKV 5'UTR and virus production.Methods Interacting proteins in U251 cells were captured using tRSA-tagged ZIKV 5'UTR RNA and tRSA-ZIKV 5'UTR RNA-binding proteins were visualized by SDS-PAGE silver staining,Subsequently,liquid chromatographytandem mass spectrometry(LC-MS/MS),bioinformatics analysis,and Western blot were used to identify the candidate proteins binding to ZIKV 5'UTR.Dicistronic expression assay and plaque forming assay were performed to analyze the effect of the binding protein on ZIKV IRES activity and ZIKV production,respecitvely.Results tRSA RNA pull-down assay,LC-MS/MS,and Western blot analysis showed that polypyrimidine tractbinding protein(PTB)bound to the ZIKV 5'UTR.Furthermore,dual luciferase reporter assay revealed that overexpression of PTB significantly enhanced the IRES activity of ZIKV(t=10.220,P<0.001),while PTB knockdown had the opposite effect(t=4.897,P<0.01).Additionally,virus plaque forming assay demonstrated that up-regulation of PTB expression significantly enhanced viral titer(t=6.400,P<0.01),whereas reducing PTB expression level weakened virus infectivity(t=5.055,P<0.01).Conclusion PTB positively interacts with the ZIKV 5'UTR and enhances IRES activity and virus production.展开更多
The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed...The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.展开更多
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma...BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.展开更多
Flaviviruses,which include globally impactful pathogens,such as West Nile virus,yellow fever virus,Zika virus,Japanese encephalitis virus,and dengue virus,contribute significantly to human infections.Despite the ongoi...Flaviviruses,which include globally impactful pathogens,such as West Nile virus,yellow fever virus,Zika virus,Japanese encephalitis virus,and dengue virus,contribute significantly to human infections.Despite the ongoing emergence and resurgence of flavivirus-mediated pathogenesis,the absence of specific therapeutic options remains a challenge in the prevention and treatment of flaviviral infections.Through the intricate processes of fusion,transcription,replication,and maturation,the complex interplay of viral and host metabolic interactions affects pathophysiology.Crucial interactions involve metabolic molecules,such as amino acids,glucose,fatty acids,and nucleotides,each playing a pivotal role in the replication and maturation of flaviviruses.These viral-host metabolic molecular interactions hijack and modulate the molecular mechanisms of host metabolism.A comprehensive understanding of these intricate metabolic pathways offers valuable insights,potentially unveiling novel targets for therapeutic interventions against flaviviral pathogenesis.This review emphasizes promising avenues for the development of therapeutic agents that target specific metabolic molecules,such as amino acids,glucose,fatty acids,and nucleotides,which interact with flavivirus replication and are closely linked to the modulation of host metabolism.The clinical limitations of current drugs have prompted the development of new inhibitory strategies for flaviviruses based on an understanding of the molecular interactions between the virus and the host.展开更多
Plasmodium (P.) falciparum is a pathogen that causes severe forms of malaria. Protein interactions have been shown to occur between P. falciparum and human erythrocytes in human blood. The Band 3 Anion Transporter (B3...Plasmodium (P.) falciparum is a pathogen that causes severe forms of malaria. Protein interactions have been shown to occur between P. falciparum and human erythrocytes in human blood. The Band 3 Anion Transporter (B3AT) protein is considered the main invasive pathway for the parasite in erythrocytes that causes clinical symptoms for malaria in humans. The interactions between P. falciparum parasites and erythrocytes along this receptor have previously been explored. Short linear motifs (SLIMs) are short linear mediator sequences that involve several biological processes, acting as mediators of protein interactions identifiable by computational tools such as SLiMFinder. For a given protein, the identification of SLIMs allows predicting its interactors. Using the SLIMs approach, protein-protein interaction network analyses between P. falciparum and its human host, were used to identify a tryptophan-rich protein, A5K5E5_PLAVS as an essential interactor of B3AT. To better understand the interaction mechanism, a guided protein-protein docking approach based on SLIM motifs was performed for human B3AT and A5K5E5_PLAVS. The highlights of this important interaction between P. falciparum and its human host have the potential to pave the way to identify new therapeutic candidates.展开更多
Protein-mediated interactions are the fundamental mechanism through which cells regulate health and disease.These interactions require physical contact between proteins and their respective targets of interest.These t...Protein-mediated interactions are the fundamental mechanism through which cells regulate health and disease.These interactions require physical contact between proteins and their respective targets of interest.These targets include not only other proteins but also nucleic acids and other important molecules as well.These proteins are often involved in multibody complexes that work dynamically to regulate cellular health and function.Various techniques have been adapted to study these important interactions,such as affinity-based assays,mass spectrometry,and fluorescent detection.The application of these techniques has led to a greater understanding of how protein interactions are responsible for both the instigation and resolution of acute inflammatory diseases.These pursuits aim to provide opportunities to target specific protein interactions to alleviate acute inflammation.展开更多
Background: Sugar moiety of macromolecules is today very well known for its implications in many biological recognition mechanisms including cell-cell, extracellular matrix-cell and/or bacteria-cell interactions. In t...Background: Sugar moiety of macromolecules is today very well known for its implications in many biological recognition mechanisms including cell-cell, extracellular matrix-cell and/or bacteria-cell interactions. In this context lectins, which are carbohydrate-binding proteins displaying a high affinity for sugar groups of other molecules, are of a great importance, notably in immune response involving bacteria, viruses and fungi. As protein-carbohydrate interactions are often mediated by ions such as calcium, zinc or magnesium, we were prompted to study the effect of a thermal spring water (which contains this type of component) on interactions existing between: 1) osidic receptors of human normal keratinocytes and 2) two lectins greatly implicated in the immune response mechanisms (i.e. the dectin-1 and the langerin), and their ligands. Materials and Methods: In a first series of experiments, we studied the effect of increasing concentrations of a thermal spring water on interactions existing between glycosylated molecules and the osidic receptors expressed at the normal human keratinocytes surface. In a second step, and in order to better understand the putative effect of our thermal spring water on the immune response, we analyzed its effect on the interactions existing between the dectin-1 (implicated in the recognition of bacteria, viruses and fungi) and the langerin (expressed by Langerhans cells, the immune cells of the cutaneous tissue), and their ligands in a model using recombinant human lectins and appropriate binding molecules. Results: We showed here that our thermal spring water was able to reinforce interactions between keratinocytes osidic receptors and some of their ligands, in a dose-related manner: From 8% to 55% of increase with 10% to 30% (v/v) of thermal spring water. In the second part of our studies, we also showed that our thermal spring water was able to modulate interactions between dectin-1 and langerin and their ligands through a biphasic effect: Interactions were enhanced by more than 40% and 20% respectively with 10% of thermal spring water, and return to their basal level or lower for higher concentrations. Conclusion: The tested thermal spring water, probably due to its ionic composition, could significantly affect interactions of osidic receptors with their ligands. This property could be of a great interest to help immune system to maintain an appropriate “vigilance state” by using the thermal water at up to a concentration of 10%, and by avoiding any runaway reaction in case of aggression, by using concentrations higher than 10%. .展开更多
Selenocysteine, a selenium-containing analog of cysteine, is found in the prokaryotic and eukaryotic kingdoms in active sites of enzymes involved in oxidation-reduction reactions. This aminoacid is cotranslationally i...Selenocysteine, a selenium-containing analog of cysteine, is found in the prokaryotic and eukaryotic kingdoms in active sites of enzymes involved in oxidation-reduction reactions. This aminoacid is cotranslationally incorporated at UGA codons which usually act as translation stop codons. In eukaryotes, decoding of selenocysteine necessitates the participation of the selenocysteine insertion sequence (SECIS), an element lying in the 3' -untranslated region of selenoprotein mRNAs. A detailed experimental study of the secondary structures of the SECIS elements of rat and human type 1 iodothyronine deiodinases and rat glutathione peroxidase was performed. Enzymatic and chemical structure probing led us to propose a secondary structure model, supported by sequence comparison of 23 SECIS mRNAs. The secondary structure model revealed the existence of a novel type of RNA motif composed of four consecutive non-Watson-Crick base-pairs. Using gel shift experiments, we identified in several mammalian cell type extracts the protein SBP,for SECIS-binding protein, that specifically recognizes the iodothyronine deiodinases and glutathione peroxidase SECIS elements. The structural model that we derived for the SECIS RNAs discloses RNA features possibly implicated in the binding of SBP and/or SECIS function展开更多
基金Supported by Guangxi Zhuang Autonomous Region Health Commission Scientific Research Project,No.Z-A20220415 and No.Z20210442The First Affiliated Hospital of Guangxi Medical University Provincial and Ministerial Key Laboratory Cultivation Project:Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer,No.21-220-18.
文摘BACKGROUND Colorectal cancer(CRC)causes many deaths worldwide.Synaptotagmin binding cytoplasmic RNA interacting protein(SYNCRIP)is an RNA-binding protein that plays an important role in multiple cancers by epigenetically targeting some genes.Our study will examine the expression,potential effect,biological function and clinical value of SYNCRIP in CRC.AIM To examine the expression,potential effect,biological function and clinical value METHODS The expression of SYNCRIP was examined by immunohistochemistry arrays and high-throughput data.The effect of SYNCRIP gene in CRC cell growth was evaluated by CRISPR-Cas9 technology.The target genes of SYNCRIP were calculated using various algorithms,and the molecular mechanism of SYNCRIP in CRC was explored by mutation analysis and pathway analysis.The clinical value of SYNCRIP in prognosis and radiotherapy was revealed via evidence-based medicine methods.RESULTS The protein and mRNA levels of SYNCRIP were both highly expressed in CRC samples compared to nontumorous tissue based on 330 immunohistochemistry arrays and 3640 CRC samples.Cells grew more slowly in eleven CRC cell lines after knocking out the SYNCRIP gene.SYNCRIP could epigenetically target genes to promote the occurrence and development of CRC by boosting the cell cycle and affecting the tumor microenvironment.In addition,CRC patients with high SYNCRIP expression are more sensitive to radiotherapy.CONCLUSION SYNCRIP is upregulated in CRC,and highly expressed SYNCRIP can accelerate CRC cell division by exerting its epigenetic regulatory effects.In addition,SYNCRIP is expected to become a potential biomarker to predict the effect of radiotherapy.
文摘Background:To develop a protein-protein interaction network of Paroxysmal nocturnal hemoglobinuria(PNH)and Aplastic anemia(AA)based on genetic genes and to predict pathways underlying the molecular complexes in the network.Methods:In this research,the PNH and AA-related genes were screened through Online Mendelian Inheritance in Man(OMIM).The plugins and Cytoscape were used to search literature and build a protein-protein interaction network.Results:The protein-protein interaction network contains two molecular complexes that are five higher than the correlation integral values.The target genes of this study were obtained:CD59,STAT3,TERC,TNF,AKT1,C5AR1,EPO,IL6,IL10 and so on.We also found that many factors regulate biological behaviors:neutrophils,macrophages,vascular endothelial growth factor,immunoglobulin,interleukin,cytokine receptor,interleukin-6 receptor,tumor necrosis factor,and so on.This research provides a bioinformatics foundation for further explaining the mechanism of common development of both.Conclusion:This indicates that the PNH and AA is a complex process regulated by many cellular pathways and multiple genes.
基金financially supported by grants from the Natural Science Foundation of Shandong Province,China(ZR2018LC005 and ZR2019BC107)the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2022C02)。
文摘The B-box(BBX)family of proteins consists of zinc-finger transcription factors with one or two highly conserved B-box motifs at their N-termini.BBX proteins play crucial roles in various aspects of plant growth and development,including seedling photomorphogenesis,shade avoidance,flowering time,and biotic and abiotic stress responses.Previous studies have identified many different BBXs from several plant species,although the BBX family members in maize are largely unknown.Genome-wide identification and comprehensive analysis of maize BBX(ZmBBX)expression and interaction networks would therefore provide valuable information for understanding their functions.In this study,36 maize BBXs in three major clades were identified.The ZmBBXs within a given clade were found to share similar domains,motifs,and genomic structures.Gene duplication analyses revealed that the expansion of BBX proteins in maize has mainly occurred by segmental duplication.The expression levels of ZmBBXs were analyzed in various organs and tissues,and under different abiotic stress conditions.Protein–protein interaction networks of ZmBBXs were established using bioinformatic tools and verified by bimolecular fluorescence complementation(BiFC)assays.Our findings can facilitate a greater understanding of the complexity of the ZmBBX family and provide novel clues for unravelling ZmBBX protein functions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12222506,12347102,and 12174184).
文摘Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive.In this study,we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer.Our findings revealed that hydrophilic bases,specifically G in single-stranded RNA(ssRNA)and single-stranded DNA(ssDNA),displayed a higher propensity to form hydrogen bonds with phospholipid head groups.Notably,ssRNA exhibited stronger binding energy than ssDNA.Furthermore,divalent ions,particularly Ca2+,facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids.Overall,our study provides valuable insights into the molecular mechanisms underlying nucleic acidphospholipid interactions,with potential implications for the nucleic acids in biotherapies,particularly in the context of lipid carriers.
基金supported by the National Natural Science Foundation of China(31970516 and 32372104)the Foundation of Hubei Hongshan Laboratory(2021hszd014).
文摘Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose and lignin.To dissect the roles of hemicellulosic polysaccharides during fiber development,four IRREGULAR XYLEM 15(IRX15)genes,GhIRX15-1/-2/-3/-4,were functionally characterized in cotton.These genes encode DUF579 domain-containing proteins,which are homologs of AtIRX15 involved in xylan biosynthesis.The four GhIRX15 genes were predominantly expressed during fiber secondary wall thickening,and the encoded proteins were localized to the Golgi apparatus.Each GhIRX15 gene could restore the xylan deficient phenotype in the Arabidopsis irx15irx15l double mutant.Silencing of GhIRX15s in cotton resulted in shorter mature fibers with a thinner cell wall and reduced cellulose content as compared to the wild type.Intriguingly,GhIRX15-2 and GhIRX15-4 formed homodimers and heterodimers.In addition,the GhIRX15s showed physical interaction with glycosyltransferases GhGT43C,GhGT47A and GhGT47B,which are responsible for synthesis of the xylan backbone and reducing end sequence.Moreover,the GhIRX15s can form heterocomplexes with enzymes involved in xylan modification and side chain synthesis,such as GhGUX1/2,GhGXM1/2 and GhTBL1.These findings suggest that GhIRX15s participate in fiber xylan biosynthesis and modulate fiber development via forming large multiprotein complexes.
基金funded by NIH-NIA R01AG061708 (to PHO)Patrick Grange Memorial Foundation (to PHO)+1 种基金A Long Swim (to PHO)CureSPG4 Foundation (to PHO)。
文摘Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.
文摘Objectives To identify the 5'untranslated region of Zika virus(ZIKV 5'UTR)RNA-binding proteins and to investigate the impact of the binding protein on the activity of internal ribosomal entry site(IRES)located in ZIKV 5'UTR and virus production.Methods Interacting proteins in U251 cells were captured using tRSA-tagged ZIKV 5'UTR RNA and tRSA-ZIKV 5'UTR RNA-binding proteins were visualized by SDS-PAGE silver staining,Subsequently,liquid chromatographytandem mass spectrometry(LC-MS/MS),bioinformatics analysis,and Western blot were used to identify the candidate proteins binding to ZIKV 5'UTR.Dicistronic expression assay and plaque forming assay were performed to analyze the effect of the binding protein on ZIKV IRES activity and ZIKV production,respecitvely.Results tRSA RNA pull-down assay,LC-MS/MS,and Western blot analysis showed that polypyrimidine tractbinding protein(PTB)bound to the ZIKV 5'UTR.Furthermore,dual luciferase reporter assay revealed that overexpression of PTB significantly enhanced the IRES activity of ZIKV(t=10.220,P<0.001),while PTB knockdown had the opposite effect(t=4.897,P<0.01).Additionally,virus plaque forming assay demonstrated that up-regulation of PTB expression significantly enhanced viral titer(t=6.400,P<0.01),whereas reducing PTB expression level weakened virus infectivity(t=5.055,P<0.01).Conclusion PTB positively interacts with the ZIKV 5'UTR and enhances IRES activity and virus production.
基金supported by the National Natural Science Foundation of China,Nos.91849115 and U1904207(to YX),81974211 and 82171247(to CS)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences,No.2020-PT310-01(to YX).
文摘The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.
文摘BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.
基金Supported by The South Korea Health Technology R and D Project through the South Korea Health Industry Development Institute,Funded by the Ministry of Health and Welfare,South Korea,No.HF20C0020.
文摘Flaviviruses,which include globally impactful pathogens,such as West Nile virus,yellow fever virus,Zika virus,Japanese encephalitis virus,and dengue virus,contribute significantly to human infections.Despite the ongoing emergence and resurgence of flavivirus-mediated pathogenesis,the absence of specific therapeutic options remains a challenge in the prevention and treatment of flaviviral infections.Through the intricate processes of fusion,transcription,replication,and maturation,the complex interplay of viral and host metabolic interactions affects pathophysiology.Crucial interactions involve metabolic molecules,such as amino acids,glucose,fatty acids,and nucleotides,each playing a pivotal role in the replication and maturation of flaviviruses.These viral-host metabolic molecular interactions hijack and modulate the molecular mechanisms of host metabolism.A comprehensive understanding of these intricate metabolic pathways offers valuable insights,potentially unveiling novel targets for therapeutic interventions against flaviviral pathogenesis.This review emphasizes promising avenues for the development of therapeutic agents that target specific metabolic molecules,such as amino acids,glucose,fatty acids,and nucleotides,which interact with flavivirus replication and are closely linked to the modulation of host metabolism.The clinical limitations of current drugs have prompted the development of new inhibitory strategies for flaviviruses based on an understanding of the molecular interactions between the virus and the host.
文摘Plasmodium (P.) falciparum is a pathogen that causes severe forms of malaria. Protein interactions have been shown to occur between P. falciparum and human erythrocytes in human blood. The Band 3 Anion Transporter (B3AT) protein is considered the main invasive pathway for the parasite in erythrocytes that causes clinical symptoms for malaria in humans. The interactions between P. falciparum parasites and erythrocytes along this receptor have previously been explored. Short linear motifs (SLIMs) are short linear mediator sequences that involve several biological processes, acting as mediators of protein interactions identifiable by computational tools such as SLiMFinder. For a given protein, the identification of SLIMs allows predicting its interactors. Using the SLIMs approach, protein-protein interaction network analyses between P. falciparum and its human host, were used to identify a tryptophan-rich protein, A5K5E5_PLAVS as an essential interactor of B3AT. To better understand the interaction mechanism, a guided protein-protein docking approach based on SLIM motifs was performed for human B3AT and A5K5E5_PLAVS. The highlights of this important interaction between P. falciparum and its human host have the potential to pave the way to identify new therapeutic candidates.
基金This work was supported by a grant from the National Institutes of Health[R35 GM138191 to RS].
文摘Protein-mediated interactions are the fundamental mechanism through which cells regulate health and disease.These interactions require physical contact between proteins and their respective targets of interest.These targets include not only other proteins but also nucleic acids and other important molecules as well.These proteins are often involved in multibody complexes that work dynamically to regulate cellular health and function.Various techniques have been adapted to study these important interactions,such as affinity-based assays,mass spectrometry,and fluorescent detection.The application of these techniques has led to a greater understanding of how protein interactions are responsible for both the instigation and resolution of acute inflammatory diseases.These pursuits aim to provide opportunities to target specific protein interactions to alleviate acute inflammation.
文摘Background: Sugar moiety of macromolecules is today very well known for its implications in many biological recognition mechanisms including cell-cell, extracellular matrix-cell and/or bacteria-cell interactions. In this context lectins, which are carbohydrate-binding proteins displaying a high affinity for sugar groups of other molecules, are of a great importance, notably in immune response involving bacteria, viruses and fungi. As protein-carbohydrate interactions are often mediated by ions such as calcium, zinc or magnesium, we were prompted to study the effect of a thermal spring water (which contains this type of component) on interactions existing between: 1) osidic receptors of human normal keratinocytes and 2) two lectins greatly implicated in the immune response mechanisms (i.e. the dectin-1 and the langerin), and their ligands. Materials and Methods: In a first series of experiments, we studied the effect of increasing concentrations of a thermal spring water on interactions existing between glycosylated molecules and the osidic receptors expressed at the normal human keratinocytes surface. In a second step, and in order to better understand the putative effect of our thermal spring water on the immune response, we analyzed its effect on the interactions existing between the dectin-1 (implicated in the recognition of bacteria, viruses and fungi) and the langerin (expressed by Langerhans cells, the immune cells of the cutaneous tissue), and their ligands in a model using recombinant human lectins and appropriate binding molecules. Results: We showed here that our thermal spring water was able to reinforce interactions between keratinocytes osidic receptors and some of their ligands, in a dose-related manner: From 8% to 55% of increase with 10% to 30% (v/v) of thermal spring water. In the second part of our studies, we also showed that our thermal spring water was able to modulate interactions between dectin-1 and langerin and their ligands through a biphasic effect: Interactions were enhanced by more than 40% and 20% respectively with 10% of thermal spring water, and return to their basal level or lower for higher concentrations. Conclusion: The tested thermal spring water, probably due to its ionic composition, could significantly affect interactions of osidic receptors with their ligands. This property could be of a great interest to help immune system to maintain an appropriate “vigilance state” by using the thermal water at up to a concentration of 10%, and by avoiding any runaway reaction in case of aggression, by using concentrations higher than 10%. .
文摘Selenocysteine, a selenium-containing analog of cysteine, is found in the prokaryotic and eukaryotic kingdoms in active sites of enzymes involved in oxidation-reduction reactions. This aminoacid is cotranslationally incorporated at UGA codons which usually act as translation stop codons. In eukaryotes, decoding of selenocysteine necessitates the participation of the selenocysteine insertion sequence (SECIS), an element lying in the 3' -untranslated region of selenoprotein mRNAs. A detailed experimental study of the secondary structures of the SECIS elements of rat and human type 1 iodothyronine deiodinases and rat glutathione peroxidase was performed. Enzymatic and chemical structure probing led us to propose a secondary structure model, supported by sequence comparison of 23 SECIS mRNAs. The secondary structure model revealed the existence of a novel type of RNA motif composed of four consecutive non-Watson-Crick base-pairs. Using gel shift experiments, we identified in several mammalian cell type extracts the protein SBP,for SECIS-binding protein, that specifically recognizes the iodothyronine deiodinases and glutathione peroxidase SECIS elements. The structural model that we derived for the SECIS RNAs discloses RNA features possibly implicated in the binding of SBP and/or SECIS function