Lightweight and mechanically strong natural silk fibers have been extensively investigated over the past decades.Inspired by this research,many artificial spinning techniques(wet spinning,dry spinning,electrospinning,...Lightweight and mechanically strong natural silk fibers have been extensively investigated over the past decades.Inspired by this research,many artificial spinning techniques(wet spinning,dry spinning,electrospinning,etc.)have been developed to fabricate robust protein fibers.As the traditional spinning methods provide poor control over the as-spun fibers,microfluidics has been integrated with these techniques to allow the fabrication of biological fibers in a well-designed manner,with simplicity and cost efficiency.The mechanical behavior of the developed fibers can be precisely modulated by controlling the type iop and size of microfluidic channel,flow rate,and shear force.This technique has been successfully used to manufacture a broad range of protein fibers,and can accelerate the production and application of protein fibers in various fields.This review outlines recent progress in the design and fabrication of protein-based fibers based on microfluidics.We first briefly discuss the natural spider silk-spinning process and the microfluidics spinning process.Next,the fabrication and mechanical properties of regenerated protein fibers via microfluidics are discussed,followed by a discussion of recombinant protein fibers.Other sourced protein fibers are also reviewed in detail.Finally,a brief outlook on the development of microfluidic technology for producing protein fibers is presented.展开更多
In this wo rk,the phase-transitioned BSA(PTB)film using the mild and fast fabrication process adhered to the capillary inner wall uniformly,and the fabricated PTB film-coated capillary column was applied to realize op...In this wo rk,the phase-transitioned BSA(PTB)film using the mild and fast fabrication process adhered to the capillary inner wall uniformly,and the fabricated PTB film-coated capillary column was applied to realize open tubular capillary electrochromatography(OT-CEC)enantioseparation.The enantioseparation ability of PTB film-coated capillary was evaluated with eight pairs of chiral analytes including drugs and neurotransmitters,all achieving good resolution and symmetrical peak shape.For three consecutive runs,the relative standard deviations(RSD)of migration time for intra-day,inter-day,and column-tocolumn repeatability were in the range of 0.3%-3.5%,0.2%-4.9%and 2.1%-7.7%,respectively.Moreover,the PTB film-coated capillary column ran continuously over 300 times with high separation efficiency.Therefore,the coating method based on BSA self-assembly supramolecular film can be extended to the preparation of other proteinaceous capillary columns.展开更多
Alzheimer’s disease (AD) is a kind of central nervous system disease. The cause of AD is unclear. It is found that the remarkable histopathological characters of AD are senile plaques and neurofibrillary tangles.β-a...Alzheimer’s disease (AD) is a kind of central nervous system disease. The cause of AD is unclear. It is found that the remarkable histopathological characters of AD are senile plaques and neurofibrillary tangles.β-amyloid plays an important role in the formation of senile plaques and the abnormal phosphorylation of Tau protein is the main reason of neurofibrillary tangles. Apolipoprotein E is correlated to AD’s access, and the third pathological characterAMY plaque perhaps represents a new cause of AD. Presenlin and proteinaceous infectious particles are also related with AD. A summary of molecular mechanism for AD and the development of research is presented.展开更多
文摘Lightweight and mechanically strong natural silk fibers have been extensively investigated over the past decades.Inspired by this research,many artificial spinning techniques(wet spinning,dry spinning,electrospinning,etc.)have been developed to fabricate robust protein fibers.As the traditional spinning methods provide poor control over the as-spun fibers,microfluidics has been integrated with these techniques to allow the fabrication of biological fibers in a well-designed manner,with simplicity and cost efficiency.The mechanical behavior of the developed fibers can be precisely modulated by controlling the type iop and size of microfluidic channel,flow rate,and shear force.This technique has been successfully used to manufacture a broad range of protein fibers,and can accelerate the production and application of protein fibers in various fields.This review outlines recent progress in the design and fabrication of protein-based fibers based on microfluidics.We first briefly discuss the natural spider silk-spinning process and the microfluidics spinning process.Next,the fabrication and mechanical properties of regenerated protein fibers via microfluidics are discussed,followed by a discussion of recombinant protein fibers.Other sourced protein fibers are also reviewed in detail.Finally,a brief outlook on the development of microfluidic technology for producing protein fibers is presented.
基金the financial support from the National Natural Science Foundation of China(No.21874060)the Special Funding for Open and Shared Large-Scale Instruments and Equipments of Lanzhou University(No.LZU-GXJJ-2019C038)。
文摘In this wo rk,the phase-transitioned BSA(PTB)film using the mild and fast fabrication process adhered to the capillary inner wall uniformly,and the fabricated PTB film-coated capillary column was applied to realize open tubular capillary electrochromatography(OT-CEC)enantioseparation.The enantioseparation ability of PTB film-coated capillary was evaluated with eight pairs of chiral analytes including drugs and neurotransmitters,all achieving good resolution and symmetrical peak shape.For three consecutive runs,the relative standard deviations(RSD)of migration time for intra-day,inter-day,and column-tocolumn repeatability were in the range of 0.3%-3.5%,0.2%-4.9%and 2.1%-7.7%,respectively.Moreover,the PTB film-coated capillary column ran continuously over 300 times with high separation efficiency.Therefore,the coating method based on BSA self-assembly supramolecular film can be extended to the preparation of other proteinaceous capillary columns.
文摘Alzheimer’s disease (AD) is a kind of central nervous system disease. The cause of AD is unclear. It is found that the remarkable histopathological characters of AD are senile plaques and neurofibrillary tangles.β-amyloid plays an important role in the formation of senile plaques and the abnormal phosphorylation of Tau protein is the main reason of neurofibrillary tangles. Apolipoprotein E is correlated to AD’s access, and the third pathological characterAMY plaque perhaps represents a new cause of AD. Presenlin and proteinaceous infectious particles are also related with AD. A summary of molecular mechanism for AD and the development of research is presented.