Developmental changes in hemolymph ecdysteroid level, ecdysteroid synthesis by prothoracic glands (PGs) in vitro, prothoracicotropic hormone (PTTH) activity in brain extracts, and PTTH activity in the hemolymph we...Developmental changes in hemolymph ecdysteroid level, ecdysteroid synthesis by prothoracic glands (PGs) in vitro, prothoracicotropic hormone (PTTH) activity in brain extracts, and PTTH activity in the hemolymph were measured during the fifth larval instar of the Eri silkworm, Samia cynthia ricini. The changing patterns of hemolymph ecdysteroid level and ecdysteroid synthesis by laGs in vitro are similar to each other, with maximums on day 9. However, on this day, hemolymph ecdysteroid level was substantially higher than ecdysteroid synthesis by PGs in vitro suggesting a high PTTH activity in the hemolymph on day 9. Moreover, the changing pattern of PTTH activity in brain extracts is also similar to that of PTTH activity in the hemolymph, both peaking on day 9. However, on this day, activity in brain extracts was much smaller than PTTH activity in the hemolymph implying that most PTTH synthesized by the brain is secreted to the hemolymph and the brain stores a very little amount of PTTH. This study provides unique insights onto the hormonal regulation of ecdysteroid synthesis in the Eri silkworm and is useful for our future studies on signal transduction of insect neurolaelatides.展开更多
文摘Developmental changes in hemolymph ecdysteroid level, ecdysteroid synthesis by prothoracic glands (PGs) in vitro, prothoracicotropic hormone (PTTH) activity in brain extracts, and PTTH activity in the hemolymph were measured during the fifth larval instar of the Eri silkworm, Samia cynthia ricini. The changing patterns of hemolymph ecdysteroid level and ecdysteroid synthesis by laGs in vitro are similar to each other, with maximums on day 9. However, on this day, hemolymph ecdysteroid level was substantially higher than ecdysteroid synthesis by PGs in vitro suggesting a high PTTH activity in the hemolymph on day 9. Moreover, the changing pattern of PTTH activity in brain extracts is also similar to that of PTTH activity in the hemolymph, both peaking on day 9. However, on this day, activity in brain extracts was much smaller than PTTH activity in the hemolymph implying that most PTTH synthesized by the brain is secreted to the hemolymph and the brain stores a very little amount of PTTH. This study provides unique insights onto the hormonal regulation of ecdysteroid synthesis in the Eri silkworm and is useful for our future studies on signal transduction of insect neurolaelatides.