To initiate voice, image, instant messaging and general multimedia communication, the Session communication must initiate between two participants. SIP (Session initiation protocol) is an application layer control, wh...To initiate voice, image, instant messaging and general multimedia communication, the Session communication must initiate between two participants. SIP (Session initiation protocol) is an application layer control, which task is creating management, and terminating this kind of Sessions. With regard to the independence of SIP from the Transport layer protocols, the SIP messages can be transferred on a variety of Transport layer protocols such as TCP or UDP. The mechanism of Retransmission, which has been embedded in SIP, is able to compensate the missing Packet loss, if needed. The application of this mechanism is when SIP messages are transmitted on an unreliable transmission layer protocol such as UDP. This mechanism, while facing with SIP proxy with overload, causes excessive filling of proxy queue, delays the increase of other contacts and adds the amount of the proxy overload. We in this article, while using UDP, as the Transport layer protocol, by regulating the Invite Retransmission Timer appropriately (T1), have improved the SIP functionality. Therefore, by proposing an Adaptive Timer of Invite message retransmission, we have tried to improve the time of Session initiation and as a result, improving the performance. The performance of the proposed SIP, by the SIPP software in a real network environment has been implemented and evaluated and its accuracy and performance has been demonstrated.展开更多
由于低功耗有损网络LLN (low power and lossy networks)呈树形结构且节点的能量受限,一旦网络中出现能量瓶颈节点而未及时处理,将会严重影响网络各方面性能。因此提出一种基于负载均衡的高能效LLN路由协议。当检测出能量瓶颈节点后,对...由于低功耗有损网络LLN (low power and lossy networks)呈树形结构且节点的能量受限,一旦网络中出现能量瓶颈节点而未及时处理,将会严重影响网络各方面性能。因此提出一种基于负载均衡的高能效LLN路由协议。当检测出能量瓶颈节点后,对溪流计时器重置策略进行改进,及时将能量瓶颈节点能量不足的状态通告给其子节点。提出一种能量瓶颈节点子节点的切换机制,旨在降低能量瓶颈节点的能耗速率,实现节点高能效。仿真结果表明,该方法在网络生存时间和节点死亡率等性能方面优于现有路由算法,其中网络平均生存时间延长了10.53%,节点死亡率降低了18.59%。展开更多
文摘To initiate voice, image, instant messaging and general multimedia communication, the Session communication must initiate between two participants. SIP (Session initiation protocol) is an application layer control, which task is creating management, and terminating this kind of Sessions. With regard to the independence of SIP from the Transport layer protocols, the SIP messages can be transferred on a variety of Transport layer protocols such as TCP or UDP. The mechanism of Retransmission, which has been embedded in SIP, is able to compensate the missing Packet loss, if needed. The application of this mechanism is when SIP messages are transmitted on an unreliable transmission layer protocol such as UDP. This mechanism, while facing with SIP proxy with overload, causes excessive filling of proxy queue, delays the increase of other contacts and adds the amount of the proxy overload. We in this article, while using UDP, as the Transport layer protocol, by regulating the Invite Retransmission Timer appropriately (T1), have improved the SIP functionality. Therefore, by proposing an Adaptive Timer of Invite message retransmission, we have tried to improve the time of Session initiation and as a result, improving the performance. The performance of the proposed SIP, by the SIPP software in a real network environment has been implemented and evaluated and its accuracy and performance has been demonstrated.
文摘由于低功耗有损网络LLN (low power and lossy networks)呈树形结构且节点的能量受限,一旦网络中出现能量瓶颈节点而未及时处理,将会严重影响网络各方面性能。因此提出一种基于负载均衡的高能效LLN路由协议。当检测出能量瓶颈节点后,对溪流计时器重置策略进行改进,及时将能量瓶颈节点能量不足的状态通告给其子节点。提出一种能量瓶颈节点子节点的切换机制,旨在降低能量瓶颈节点的能耗速率,实现节点高能效。仿真结果表明,该方法在网络生存时间和节点死亡率等性能方面优于现有路由算法,其中网络平均生存时间延长了10.53%,节点死亡率降低了18.59%。