Solid oxide electrolysis cells(SOECs)including the oxygen ion-conducting SOEC(O-SOEC)and the proton-conducting SOEC(H-SOEC)have been actively investigated as next-generation electrolysis technologies that can provide ...Solid oxide electrolysis cells(SOECs)including the oxygen ion-conducting SOEC(O-SOEC)and the proton-conducting SOEC(H-SOEC)have been actively investigated as next-generation electrolysis technologies that can provide high-energy conversion efficiencies for H_(2)O and CO_(2) electrolysis to sustainably produce hydrogen and low-carbon fuels,thus providing higher-temperature routes for energy storage and conversion.Current research has also focused on the promotion of SOEC critical components to accelerate wider practical implementation.Based on these investigations,this perspective will summarize the most recent progress in the optimization of electrolysis performance and long-term stability of SOECs,with an emphasis on material developments,technological approaches and improving strategies,such as nano-composing,surface/interface engineering,doping and in situ exsolution.Existing technical challenges are also analyzed,and future research directions are proposed to achieve SOEC technical maturity and economic feasibility for diverse conversion applications.展开更多
文摘Solid oxide electrolysis cells(SOECs)including the oxygen ion-conducting SOEC(O-SOEC)and the proton-conducting SOEC(H-SOEC)have been actively investigated as next-generation electrolysis technologies that can provide high-energy conversion efficiencies for H_(2)O and CO_(2) electrolysis to sustainably produce hydrogen and low-carbon fuels,thus providing higher-temperature routes for energy storage and conversion.Current research has also focused on the promotion of SOEC critical components to accelerate wider practical implementation.Based on these investigations,this perspective will summarize the most recent progress in the optimization of electrolysis performance and long-term stability of SOECs,with an emphasis on material developments,technological approaches and improving strategies,such as nano-composing,surface/interface engineering,doping and in situ exsolution.Existing technical challenges are also analyzed,and future research directions are proposed to achieve SOEC technical maturity and economic feasibility for diverse conversion applications.