期刊文献+
共找到300篇文章
< 1 2 15 >
每页显示 20 50 100
Development of advanced anion exchange membrane from the view of the performance of water electrolysis cell 被引量:2
1
作者 Chao Liu Zhen Geng +6 位作者 Xukang Wang Wendong Liu Yuwei Wang Qihan Xia Wenbo Li Liming Jin Cunman Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期348-369,I0009,共23页
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t... Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 HYDROGEN water electrolysis Anion exchange membrane electrolysis cell
下载PDF
Electrochemical reconstruction of non-noble metal-based heterostructure nanorod arrays electrodes for highly stable anion exchange membrane seawater electrolysis
2
作者 Jingchen Na Hongmei Yu +7 位作者 Senyuan Jia Jun Chi Kaiqiu Lv Tongzhou Li Yun Zhao Yutong Zhao Haitao Zhang Zhigang Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期370-382,共13页
Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,par... Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AEMWE in the direct seawater electrolysis industry. 展开更多
关键词 Direct seawater electrolysis Anion exchange membrane water electrolysis Oxygen evolution reaction Oxygen vacancies Operando electrochemistry techniques
下载PDF
Towards high-performance and robust anion exchange membranes(AEMs)for water electrolysis:Super-acid-catalyzed synthesis of AEMs
3
作者 Geun Woong Ryoo Sun Hwa Park +3 位作者 Ki Chang Kwon Jong Hun Kang Ho Won Jang Min Sang Kwon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期478-510,I0012,共34页
The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen pro... The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications. 展开更多
关键词 Green hydrogen production water electrolysis Anion exchange membrane water electrolyzer(AEMWE) Anion exchange membranes(AEMs) Super-acid-catalyzed condensation(SACC)
下载PDF
Pore-Scale Investigation of Coupled Two-Phase and Reactive Transport in the Cathode Electrode of Proton Exchange Membrane Fuel Cells 被引量:1
4
作者 Shengjie Ye Yuze Hou +2 位作者 Xing Li Kui Jiao Qing Du 《Transactions of Tianjin University》 EI CAS 2023年第1期1-13,共13页
A three-dimensional multicomponent multiphase lattice Boltzmann model(LBM)is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells.... A three-dimensional multicomponent multiphase lattice Boltzmann model(LBM)is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells.The gas diff usion layer(GDL)and microporous layer(MPL)are stochastically reconstructed with the inside dynamic distribution of oxygen and liquid water resolved,and the catalyst layer is simplifi ed as a superthin layer to address the electrochemical reaction,which provides a clear description of the fl ooding eff ect on mass transport and performance.Diff erent kinds of electrodes are reconstructed to determine the optimum porosity and structure design of the GDL and MPL by comparing the transport resistance and per-formance under the fl ooding condition.The simulation results show that gradient porosity GDL helps to increase the reactive area and average concentration under fl ooding.The presence of the MPL ensures the oxygen transport space and reaction area because liquid water cannot transport through micropores.Moreover,the MPL helps in the uniform distribution of oxygen for an effi cient in-plane transport capacity.Crack and perforation structures can accelerate the water transport in the assembly.The systematic perforation design yields the best performance under fl ooding by separating the transport of liquid water and oxygen. 展开更多
关键词 proton exchange membrane fuel cell Lattice Boltzmann model ELECTRODE water management Two-phase fl ow Reactive transport
下载PDF
Water Distribution and Removal along the Flow Channel in Proton Exchange Membrane Fuel Cells 被引量:2
5
作者 丁刚强 TANG Heqing +4 位作者 LUO Zhiping 涂正凯 PEI Houchang LIU Zhichun LIU Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第2期243-248,共6页
Distribution expressions of total gas pressure and partial water vapor pressure along the channel direction were established based on lumped model by analyzing pressure loss in the channel and gas diffusion in the lay... Distribution expressions of total gas pressure and partial water vapor pressure along the channel direction were established based on lumped model by analyzing pressure loss in the channel and gas diffusion in the layer. The mechanism of droplet formation in the flow channel was also analyzed. Effects of the relative humidity, working temperature and stoichiometry on liquid water formation were discussed in detail. Moreover, the force equilibrium equation of the droplet in the flow channel was deduced, and the critical flow velocity for the water droplet removal was also addressed. The experimental results show that the threshold position of the liquid droplet is far from the inlet with the increase of temperature, and it decreases with the increase of the inlet total pressure. The critical flow velocity decreases with the increase of the radius and the working pressure. 展开更多
关键词 proton exchange membrane fuel cells pressure loss water distribution water removal
下载PDF
Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis 被引量:2
6
作者 Yoo Sei Park Jae-Yeop Jeong +6 位作者 Myeong Je Jang Chae-Yeon Kwon Geul Han Kim Jaehoon Jeong Ji-hoon Lee Jooyoung Lee Sung Mook Choi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期127-134,I0004,共9页
Anion exchange membrane(AEM)water electrolyzers are promising energy devices for the production of clean hydrogen from seawater.However,the lack of active and robust electrocatalysts for the oxygen evolution reaction(... Anion exchange membrane(AEM)water electrolyzers are promising energy devices for the production of clean hydrogen from seawater.However,the lack of active and robust electrocatalysts for the oxygen evolution reaction(OER)severely impedes the development of this technology.In this study,a ternary layered double hydroxide(LDH)OER electrocatalyst(NiFeCo-LDH)is developed for high-performance AEM alkaline seawater electrolyzers.The AEM alkaline seawater electrolyzer catalyzed by the NiFeCo LDH shows high seawater electrolysis performance(0.84 A/cm^(2)at 1.7 Vcell)and high hydrogen production efficiency(77.6%at 0.5 A/cm^(2)),thus outperforming an electrolyzer catalyzed by a benchmark IrO_(2)electrocatalyst.The NiFeCo-LDH electrocatalyst greatly improves the kinetics of the AEM alkaline seawater electrolyzer,consequently reducing its activation loss and leading to high performance.Based on the results,this NiFeCo-LDH-catalyzed AEM alkaline seawater electrolyzer can likely surpass the energy conversion targets of the US Department of Energy. 展开更多
关键词 Anion exchange membranes water electrolysis Oxygen evolution reactions Alkaline seawater electrolysis Hydrogen production
下载PDF
Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management 被引量:2
7
作者 Yingjie Zhou Wenhui Zhang +2 位作者 Shengwei Yu Haibo Jiang Chunzhong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期246-252,共7页
Mass transport is crucial to the performance of proton exchange membrane fuel cells,especially at high current densities.Generally,the oxygen and the generated water share same transmission medium but move towards opp... Mass transport is crucial to the performance of proton exchange membrane fuel cells,especially at high current densities.Generally,the oxygen and the generated water share same transmission medium but move towards opposite direction,which leads to serious mass transfer problems.Herein,a series of patterned catalyst layer were prepared with a simple one-step impressing method using nylon sieves as templates.With grooves 100μm in width and 8μm in depth on the surface of cathode catalyst layer,the maximum power density of fuel cell increases by 10%without any additional durability loss while maintaining a similar electrochemical surface area.The concentration contours calculated by finite element analysis reveal that the grooves built on the surface of catalyst layer serve to accumulate the water nearby while oxygen tends to transfer through relatively convex region,which results from capillary pressure difference caused by the pore structure difference between the two regions.The separation of oxidant gas and generated water avoids mass confliction thus boosts mass transport efficiency. 展开更多
关键词 water management Mass transfer Patterned catalyst layer proton exchange membrane fuel cells Finite element analysis
下载PDF
A systematic review of system modeling and control strategy of proton exchange membrane fuel cell 被引量:1
8
作者 Yujie Wang Xingliang Yang +1 位作者 Zhengdong Sun Zonghai Chen 《Energy Reviews》 2024年第1期24-38,共15页
The proton exchange membrane fuel cell,as a novel energy device,exhibits a wide array of potential applications.This paper offers a comprehensive review and discussion of modeling and control strategies for fuel cell ... The proton exchange membrane fuel cell,as a novel energy device,exhibits a wide array of potential applications.This paper offers a comprehensive review and discussion of modeling and control strategies for fuel cell systems.It commences with a concise introduction to the structure and principles of fuel cells.Subsequently,it outlines modeling approaches for various fuel cell subsystems,encompassing the fuel cell stack,air supply system,hydrogen supply system,thermal management system,and water management system.Following this,it conducts a comparative analysis and discussion of prevalent control strategies for the aforementioned subsystems.Lastly,the paper outlines future research trends and directions in the modeling and control strategies of fuel cells.The aim of this paper is to provide ideas and inspirations for the design and management of membrane fuel cell systems from control aspects. 展开更多
关键词 proton exchange membrane fuel cell system modeling and Control system modeling and control water and thermal management
原文传递
Generation of input spectrum for electrolysis stack degradation test applied to wind power PEM hydrogen production
9
作者 Yanhui Xu Guanlin Li +1 位作者 Yuyuan Gui Zhengmao Li 《Global Energy Interconnection》 EI CSCD 2024年第4期462-474,共13页
Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current... Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy. 展开更多
关键词 Hydrogen production by electrolysis of water Wind power proton exchange membrane electrolyzer Gaussian mixture model Cyclic operating condition
下载PDF
Internal Polarization Field Induced Hydroxyl Spillover Effect for Industrial Water Splitting Electrolyzers
10
作者 Jingyi Xie Fuli Wang +3 位作者 Yanan Zhou Yiwen Dong Yongming Chai Bin Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期438-449,共12页
The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous... The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous supply at active sits remains a tremendous challenge.Herein,an affordable Ni2P/FeP2 heterostructure is presented to form the internal polarization field(IPF),arising hydroxyl spillover(HOSo)during OER.Facilitated by IPF,the oriented HOSo from FeP2 to Ni2P can activate the Ni site with a new hydroxyl transmission channel and build the optimized reaction path of oxygen intermediates for lower adsorption energy,boosting the OER activity(242 mV vs.RHE at 100 mA cm-2)for least 100 h.More interestingly,for the anion exchange membrane water electrolyzer(AEMWE)with low concentration electrolyte,the advantage of HOSo effect is significantly amplified,delivering 1 A cm^(-2)at a low cell voltage of 1.88 V with excellent stability for over 50 h. 展开更多
关键词 Hydroxyl spillover effect Internal polarization field HETEROSTRUCTURE Oxygen reduction reaction Anion exchange membrane water electrolysis
下载PDF
High-performance porous transport layers for proton exchange membrane water electrolyzers
11
作者 Youkun Tao Minhua Wu +4 位作者 Meiqi Hu Xihua Xu Muhammad I.Abdullah Jing Shao Haijiang Wang 《SusMat》 SCIE EI 2024年第4期211-242,共32页
Hydrogen is a favored alternative to fossil fuels due to the advantages of clean-liness,zero emissions,and high calorific value.Large-scale green hydrogen production can be achieved using proton exchange membrane wate... Hydrogen is a favored alternative to fossil fuels due to the advantages of clean-liness,zero emissions,and high calorific value.Large-scale green hydrogen production can be achieved using proton exchange membrane water electrolyz-ers(PEMWEs)with utilization of renewable energy.The porous transport layer(PTL),positioned between the flow fields and catalyst layers(CLs)in PEMWEs,plays a critical role in facilitating water/gas transport,enabling electrical/thermal conduction,and mechanically supporting CLs and membranes.Superior cor-rosion resistance is essential as PTL operates in acidic media with oxygen saturation and high working potential.This paper covers the development of high-performance titanium-based PTLs for PEMWEs.The heat/electrical con-duction and mass transport mechanisms of PTLs and how they affect the overall performances are reviewed.By carefully designing and controlling substrate microstructure,protective coating,and surface modification,the performance of PTL can be regulated and optimized.The two-phase mass transport char-acteristics can be enhanced by fine-tuning the microstructure and surface wettability of PTL.The addition of a microporous top-layer can effectively improve PTL|CL contact and increase the availability of catalytic sites.The anti-corrosion coatings,which are crucial for chemical stability and conductivity of the PTL,are compared and analyzed in terms of composition,fabrication,and performance. 展开更多
关键词 mass transport MICROSTRUCTURE PERFORMANCE porous transport layer proton exchange mem-brane water electrolysis
原文传递
Progresses on two-phase modeling of proton exchange membrane water electrolyzer
12
作者 Boshi Xu Tao Ouyang +8 位作者 Yang Wang Yang Yang Jun Li Liangliang Jiang Chaozhong Qin Dingding Ye Rong Chen Xun Zhu Qiang Liao 《Energy Reviews》 2024年第3期30-57,共28页
The Proton Exchange Membrane(PEM)water electrolyzer is considered one of the promising energy storing means for harnessing variable renewable energy sources to produce hydrogen.Understanding the internal fluid dynamic... The Proton Exchange Membrane(PEM)water electrolyzer is considered one of the promising energy storing means for harnessing variable renewable energy sources to produce hydrogen.Understanding the internal fluid dynamics,which are often challenging to directly observe experimentally,has prompted the use of numerical models to investigate two-phase flow within PEM water electrolyzers.In this study,we provide a comprehensive review of prior research focusing on two-phase modeling of PEM electrolyzers,encompassing both components at mesoscopic scales and the full electrolyzer at the macroscopic level.We delve into the specifics of various modeling approaches for two-phase flow at different scales and summarize and discuss the current state of the art in the field.Presently,two-phase models for the full electrolyzer predominantly employ a macroscopic homogeneous assumption.However,mesoscopic and microscopic models capable of tracking phase interfaces are limited to components.Challenges persist in integrating various modeling scales into a comprehensive electrolyzer model,particularly in coupling two-phase flow between the channels and porous media.Future efforts should focus on developing multi-scale models and simulating two-phase flow under fluctuating input conditions.Additionally,given the structural similarities between PEM water electrolyzers and PEM fuel cells,we compare and discuss differences in two-phase modeling between the two technologies.This work offers the insights for researchers in the field of modeling of PEM water electrolyzers and even fuel cells. 展开更多
关键词 proton exchange membrane(PEM)water ELECTROLYZER Two-phase model Multiscale modeling water management Numerical simulation
原文传递
Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis 被引量:2
13
作者 Lulu Chen Yichao Huang +12 位作者 Yanping Ding Ping Yu Fang Huang Wenbo Zhou Limin Wang Yangyang Jiang Haitao Li Hanqing Cai Lin Wang Hang Wang Meihong Liao Lianming Zhao Zhuangjun Fan 《Nano Research》 SCIE EI CSCD 2023年第10期12186-12195,共10页
Platinum(Pt)-based electrocatalysts remain the only practical cathode catalysts for proton exchange membrane water electrolysis(PEMWE),due to their excellent catalytic activity for acidic hydrogen evolution reaction(H... Platinum(Pt)-based electrocatalysts remain the only practical cathode catalysts for proton exchange membrane water electrolysis(PEMWE),due to their excellent catalytic activity for acidic hydrogen evolution reaction(HER),but are greatly limited by their low reserves and high cost.Here,we report an interfacial engineering strategy to obtain a promising low-Pt loading catalyst with atomically Pt-doped molybdenum carbide quantum dots decorated on conductive porous carbon(Pt-MoCx@C)for high-rate and stable HER in PEMWE.Benefiting from the strong interfacial interaction between Pt atoms and the ultra-small MoCx quantum dots substrate,the Pt-MoCx catalyst exhibits a high mass activity of 8.00 A·mgPt−1,5.6 times higher than that of commercial 20 wt.%Pt/C catalyst.Moreover,the strong interfacial coupling of Pt and MoCx substrate greatly improves the HER stability of the Pt-MoCx catalyst.Density functional theory studies further confirm the strong metal-support interaction on Pt-MoCx,the critical role of MoCx substrate in the stabilization of surface Pt atoms,as well as activation of MoCx substrate by Pt atoms for improving HER durability and activity.The optimized Pt-MoCx@C catalyst demonstrates>2000 h stability under a water-splitting current of 1000 mA·cm^(−2)when applied to the cathode of a PEM water electrolyzer,suggesting the potential for practical applications. 展开更多
关键词 proton exchange membrane(PEM)water electrolysis hydrogen evolution reaction ELECTROCATALYSTS molybdenum carbides PLATINUM
原文传递
Numerical Investigation on the Effects of Design Parameters and Operating Conditions on the Electrochemical Performance of Proton Exchange Membrane Water Electrolysis
14
作者 HASSAN Alamir H. WANG Xueye +1 位作者 LIAO Zhirong Xu Chao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期1989-2007,共19页
Proton exchange membrane electrolysis cell(PEMEC)is one of the most promising methods to produce hydrogen at high purity and low power consumption.In this study,a three-dimensional non-isothermal model is used to simu... Proton exchange membrane electrolysis cell(PEMEC)is one of the most promising methods to produce hydrogen at high purity and low power consumption.In this study,a three-dimensional non-isothermal model is used to simulate the cell performance of a typical PEMEC based on computational fluid dynamics(CFD)with the finite element method.Then,the model is used to investigate the distributions of current density,species concentration,and temperature at the membrane/catalyst(MEM/CL)interface.Also,the effects of operating conditions and design parameters on the polarization curve,specific electrical energy demand,and electrical cell efficiency are studied.The results show that the maximum distribution of current density,hydrogen concentration,oxygen concentration,and temperature occur beneath the core ribs and increase towards the channel outlet,while the maximum water concentration distribution happens under the channel and decreases towards the channel exit direction.The increase in gas diffusion layer(GDL)thickness reduces the uneven distribution of the contour at the MEM/CL interface.It is also found that increasing the operating temperature from 323 K to 363 K reduces the cell voltage and specific energy demand.The hydrogen ion diffusion degrades with increasing the cathode pressure,which increases the specific energy demand and reduces the electrical cell efficiency.Furthermore,increasing the thickness of the GDL and membrane rises the specific energy demand and lowers the electrical efficiency,but increasing GDL porosity reduces the specific electrical energy demand and improves the electrical cell efficiency;thus using a thin membrane and GDL is recommended. 展开更多
关键词 hydrogen production proton exchange membrane water electrolysis gas diffusion layer cell efficiency
原文传递
The influence of patterned microporous layer on the proton exchange membrane fuel cell performances
15
作者 Shunzhong Wang Kadi Hu +8 位作者 Wei Chen Yali Cao Linan Wang Zhichang Wang Lirui Cui Mingzheng Zhou Wei Zhu Hui Li Zhongbin Zhuang 《Nano Research》 SCIE EI CSCD 2024年第7期6095-6101,共7页
The ordered membrane electrode assembly(MEA)has gained much attention because of its potential in improving mass transfer.Here,a comprehensive study was conducted on the influence of the patterned microporous layer(MP... The ordered membrane electrode assembly(MEA)has gained much attention because of its potential in improving mass transfer.Here,a comprehensive study was conducted on the influence of the patterned microporous layer(MPL)on the proton exchange membrane fuel cell performances.When patterned MPL is employed,grooves are generated between the catalyst layer and the gas diffusion layer.It is found that the grooves do not increase the contact resistance,and it is beneficial for water retention.When the MEA works under low humidity scenarios,the MEA with patterned MPL illustrated higher performance,due to the reduced inner resistance caused by improved water retention,leading to increased ionic conductivity.However,when the humidity is higher than 80%or working under high current density,the generated water accumulated in the grooves and hindered the oxygen mass transport,leading to a reduced MEA performance. 展开更多
关键词 microporous layer patterned proton exchange membrane fuel cell mass transport humidity water reduction
原文传递
Layered power scheduling optimization of PV hydrogen production system considering performance attenuation of PEMEL 被引量:1
16
作者 Yanhui Xu Haowei Chen 《Global Energy Interconnection》 EI CSCD 2023年第6期714-725,共12页
To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for powe... To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for power scheduling in hydrogen production systems under the scenario of photovoltaic(PV)electrolysis of water.First,voltage and performance attenuation models of the PEMEL are proposed,and the degradation cost of the electrolyzer under a fluctuating input is considered.Then,the calculation of the investment and operating costs of the hydrogen production system for a typical day is based on the life cycle cost.Finally,a layered power scheduling optimization method is proposed to reasonably distribute the power of the electrolyzer and energy storage system in a hydrogen production system.In the up-layer optimization,the PV power absorbed by the hydrogen production system was optimized using MALTAB+Gurobi.In low-layer optimization,the power allocation between the PEMEL and battery energy storage system(BESS)is optimized using a non-dominated sorting genetic algorithm(NSGA-Ⅱ)combined with the firefly algorithm(FA).A better optimization result,characterized by lower degradation and total costs,was obtained using the method proposed in this study.The improved algorithm can search for a better population and obtain optimization results in fewer iterations.As a calculation example,data from a PV power station in northwest China were used for optimization,and the effectiveness and rationality of the proposed optimization method were verified. 展开更多
关键词 PV electrolysis of water proton exchange membrane electrolyzer Performance attenuation Degradation cost Power scheduling optimization
下载PDF
基于蜂窝仿生流场的质子交换膜燃料电池的性能研究及优化
17
作者 张凌云 赵雷 +5 位作者 卢家鹏 陈辉 朱学军 杨涛 王诚 杜星 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期2106-2116,共11页
为了增强质子交换膜燃料电池(PEMFCs)内部燃料分布的均匀性与水管理能力,本文研究了一种新型的基于仿生结构的蜂窝仿生流场。首先,根据蜂窝结构特征,搭建出三维多相流非等温几何模型并确立PEMFC的数学模型;其次,采用计算流体动力学Fluen... 为了增强质子交换膜燃料电池(PEMFCs)内部燃料分布的均匀性与水管理能力,本文研究了一种新型的基于仿生结构的蜂窝仿生流场。首先,根据蜂窝结构特征,搭建出三维多相流非等温几何模型并确立PEMFC的数学模型;其次,采用计算流体动力学Fluent软件对模型进行无关性与有效性验证,并对蜂窝仿生流场和常规平行流场的电池性能和燃料分布进行了模拟分析;最后,对比极化性能、气体流速分布、燃料与液态水组分浓度和电流密度分布,验证了蜂窝仿生流场设计的有效性。研究结果表明:采用蜂窝仿生流场的电池峰值功率密度比常规平行流场高15.6%,其内部水管理能力和燃料分布均匀性均强于平行流场;左端进气的蜂窝仿生流场比采用上端进气的蜂窝仿生流场在气体通路内具有更均匀的气体压力,可有效避免流道内产生局部涡流,其峰值功率密度可以达到0.3933 W/cm2。 展开更多
关键词 质子交换膜燃料电池 蜂窝仿生流场 压降 水管理
下载PDF
燃料电池气体扩散层表面液相涌出行为
18
作者 刘帅 姚晓航 +2 位作者 张礼斌 王忠 裴昊 《洁净煤技术》 CAS CSCD 北大核心 2024年第7期145-153,共9页
燃料电池流道内的两相分布特性对于提升燃料电池水管理能力至关重要,探究多液滴在流道表面流动行为利于优化结构及运行条件。使用流体体积(Volume of Fluid)法对液态水从气体扩散层(Gas diffusion layer)涌出到流道内的动态过程进行模拟... 燃料电池流道内的两相分布特性对于提升燃料电池水管理能力至关重要,探究多液滴在流道表面流动行为利于优化结构及运行条件。使用流体体积(Volume of Fluid)法对液态水从气体扩散层(Gas diffusion layer)涌出到流道内的动态过程进行模拟,研究流道内气体流速、GDL表面接触角和水孔间距对水涌出过程和流动行为影响。结果表明,液滴在GDL表面经历了生长、分离、传输和碰撞凝并等过程。气体流速明显影响压降和液滴分离周期,随着气体流速增加,压降增加,液滴分离周期从14.7 ms降至4.7 ms,水去除能力显著增强,高气体流速造成液滴形态和流动情况不稳定。GDL表面润湿性改变了表面张力,影响液滴形态和流动,显著影响水覆盖率,随着接触角增大,GDL表面平均水覆盖率从20.03%降至9.01%;水孔间距对液滴碰撞周期影响大,小水孔间距时液滴在生长中发生凝并,大液滴飞溅造成流道内气流速度下降,压降和GDL表面水覆盖率产生大波动;大水孔间距时,流道内速度场受影响明显,前一液滴获得大速度后发生碰撞更易造成液滴飞溅,导致最大水孔间距时水覆盖率下降,从16.84%(D=0.8 cm)骤降至14.69(D=1.2 cm)。研究结果为流道表面接触角,GDL孔隙分布、进气条件等参数优化提供理论指导和技术借鉴,改善质子交换膜燃料电池水传输能力提高工作效率。 展开更多
关键词 质子交换膜燃料电池 水管理 气体扩散层 流体体积法 液滴流动行为
下载PDF
Modulating metal-organic frameworks for catalyzing acidic oxygen evolution for proton exchangemembrane water electrolysis 被引量:4
19
作者 Xiaomin Xu Hainan Sun +1 位作者 San Ping Jiang Zongping Shao 《SusMat》 2021年第4期460-481,共22页
Proton exchangemembrane(PEM)water electrolysis represents one of the most promising technologies to achieve green hydrogen production,but currently its practical viability is largely affected by the slow reaction kine... Proton exchangemembrane(PEM)water electrolysis represents one of the most promising technologies to achieve green hydrogen production,but currently its practical viability is largely affected by the slow reaction kinetics of the anodic oxygen evolution reaction(OER)in an acidic environment.While noble metal-based catalysts containing iridium or ruthenium are excellent catalysts for the acidic OER,their practical use in PEM electrolyzers is hindered due to their low abundance and high cost.Most recently,metal-organic frameworks(MOFs)have been demonstrated as a perfect platform to facilitate the design of acidic OER catalysts with both high efficiency and cost-effectiveness.Here,we pro-vide a timely and comprehensive overview of the recent progress on MOF-based acidic OER catalysts.The fundamental mechanisms of the acidic OER are first introduced,followed by a summary of the development of pristine MOFs and MOF derivatives as acidic OER catalysts.Importantly,a number of catalyst design strategies are discussed aiming at improving the acidic OER catalytic per-formance of MOF-based candidates.The integration of MOF-based catalysts into real PEM water electrolyzers is also included.Finally,future research directions are provided to achieve better MOF-based catalysts operational in acidic envi-ronments and PEM devices. 展开更多
关键词 acidic water oxidation ELECTROCATALYSIS hydrogen production metal-organic frameworks oxy-gen evolution reaction proton exchange membrane water electrolysis
原文传递
Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell 被引量:3
20
作者 WANG ZhiMing XU Chao +2 位作者 WANG XueYe LIAO ZhiRong DU XiaoZe 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第7期1555-1566,共12页
A three-dimensional, non-isothermal, two-phase model for a PEM water electrolysis cell(PEMEC) is established in this study.An effective connection between two-phase transport and performance in the PEMECs is built thr... A three-dimensional, non-isothermal, two-phase model for a PEM water electrolysis cell(PEMEC) is established in this study.An effective connection between two-phase transport and performance in the PEMECs is built through coupling the liquid water saturation and temperature in the charge conservation equation. The distributions of liquid water and temperature with different operating(voltage, temperature, inlet velocity) and physical(contact angle, and porosity of anode gas diffusion layer) parameters are examined and discussed in detail. The results show that the water and temperature distributions, which are affected by the operating and physical parameters, have a combined effect on the cell performance. The effects of various parameters on the PEMEC are of interaction and restricted mutually. As the voltage increases, the priority factor caused by the change of inlet water velocity changes from the liquid water saturation increase to the temperature drop in the anode catalyst layer. While the priority influence factor caused by the contact angle and porosity of anode gas diffusion layer is the liquid water saturation. Decreasing the contact angle or/and increasing the porosity can improve the PEMEC performance especially at the high voltage. The results can provide a better understanding of the effect of heat and mass transfer and the foundation for optimization design. 展开更多
关键词 proton exchange membrane electrolysis cell two-phase model liquid water saturation flow rate temperature distribution
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部