Recently,electronic skins and fl exible wearable devices have been developed for widespread applications in medical monitoring,artifi cial intelligence,human–machine interaction,and artifi cial prosthetics.Flexible p...Recently,electronic skins and fl exible wearable devices have been developed for widespread applications in medical monitoring,artifi cial intelligence,human–machine interaction,and artifi cial prosthetics.Flexible proximity sensors can accurately perceive external objects without contact,introducing a new way to achieve an ultrasensitive perception of objects.This article reviews the progress of fl exible capacitive proximity sensors,fl exible triboelectric proximity sensors,and fl exible gate-enhanced proximity sensors,focusing on their applications in the electronic skin fi eld.Herein,their working mechanism,materials,preparation methods,and research progress are discussed in detail.Finally,we summarize the future challenges in developing fl exible proximity sensors.展开更多
The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article propose...The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).展开更多
Soil moisture and salinity are two crucial coastal saline soil variables, which influence the soil quality and agricultural productivity in the reclaimed coastal region. Accurately characterizing the spatial variabili...Soil moisture and salinity are two crucial coastal saline soil variables, which influence the soil quality and agricultural productivity in the reclaimed coastal region. Accurately characterizing the spatial variability of these soil parameters is critical for the rational development and utilization of tideland resources. In the present study, the spatial variability of soil moisture and salinity in the reclaimed area of Hangzhou gulf, Shangyu City, Zhejiang Province, China, was detected using the data acquired from radar image and the proximal sensor EM38. Soil moisture closely correlates radar scattering coefficient, and a simplified inversion model was built based on a backscattering coefficient extracted from multi-polarization data of ALOS/PALSAR and in situ soil moisture measured by a time domain reflectometer to detect soil moisture variations. The result indicated a higher accuracy of soil moisture inversion by the HH polarization mode than those by the HV mode. Soil salinity is reflected by soil apparent electrical conductivity (ECa). Further, ECa can be rapidly detected by EM38 equipment in situ linked with GPS for characterizing the spatial variability of soil salinity. Based on the strong spatial variability and interactions of soil moisture and salinity, a cokriging interpolation method with auxiliary variable of backscattering coefficient was adopted to map the spatial variability of ECa. When compared with a map of ECa interpolated by the ordinary kriging method, detail was revealed and the accuracy was increased by 15.3%. The results conclude that the integrating active remote sensing and proximal sensors EM38 are effective and acceptable approaches for rapidly and accurately detecting soil moisture and salinity variability in coastal areas, especially in the subtropical coastal zones of China with frequent heavy cloud cover.展开更多
As described in this paper, we propose a new haptic interface for a service robot. For safety with service robots working in a space where people live, some notification before collision with an obstacle is desirable....As described in this paper, we propose a new haptic interface for a service robot. For safety with service robots working in a space where people live, some notification before collision with an obstacle is desirable. To achieve such a function, we developed a master-slave manipulator system in which the slave manipulator surface is covered with many proximity sensors. Additionally, we developed a haptic device that feeds back proximity sense information to the operator using small vibration motors. We attached the haptic device to the arm of the operator and vibrated the vibration motor corresponding to the sensor. Thereby, the operator was able to ascertain the position of an object near the manipulator, and to make the robot maneuver to avoid it before collision. To confirm the system usefulness, we equipped subjects with the developed proximity sense presentation device and performed a detection-position-specific experiment and an obstacle avoidance experiment in a narrow space. As results of the detection position specific experiment on five subjects, four subjects reported the detection position correctly. The remaining one person failed because of his particular arm shape. Operation experiments conducted in a narrow space showed that all subjects' work was successful when given feedback of proximity sense information. Nobody was successful without proximity sense information. Results of these two experiments demonstrate that this proposed system is useful for obstacle avoidance of a master-slave manipulator system.展开更多
Industrial Control Systems(ICS)and SCADA(Supervisory Control and Data Acquisition)systems play a critical role in the management and regulation of critical infrastructure.SCADA systems brings us closer to the real-tim...Industrial Control Systems(ICS)and SCADA(Supervisory Control and Data Acquisition)systems play a critical role in the management and regulation of critical infrastructure.SCADA systems brings us closer to the real-time application world.All process and equipment control capability is typically provided by a Distributed Control System(DCS)in industries such as power stations,agricultural systems,chemical and water treatment plants.Instead of control through DCS,this paper proposes a SCADA and PLC(Programmable Logic Controller)system to control the ratio control division and the assembly line division inside the chemical plant.A specific design and implementation method for development of SCADA/PLC based real time ratio control and automated assembly line system in a chemical plant is introduced.The assembly line division is further divided into sorting stage,filling stage and the auxiliary stage,which includes the capping unit,labelling unit and then the storage.In the ratio control division,we have defined the levels inside the mixer and ratio of the raw materials through human machine interface(HMI)panel.The ratio of raw materials is kept constant on the basis of flow rates of wild stream and manipulated stream.There is a flexibility in defining new levels and the ratios of the raw materials inside the mixer.But here we taken the predefined levels(low,medium,high)and ratios(3:4,2:1,2:5).Control valves are used for regulating the flow of the compositions.In the assembly line division,the containers are sorted on the basis of size and type of material used i.e.,big sized metallic containers and small sized non-metallic containers by inductive and capacitive proximity sensors.All the processes are facilitated with laser beam type or reflective type sensors on the conveyor system.Building a highly stable and dependable PLC/SCADA system instead of Distributed Control System is required to achieve automatic management and control of chemical industry processes to reduce waste manpower and physical resources,as well as to improve worker safety.展开更多
Over the past few years, the rapid development of tactile sensing technology has contributed significantly to the realization of intuitional touch control and intelligent human-machine interaction. Apart from physical...Over the past few years, the rapid development of tactile sensing technology has contributed significantly to the realization of intuitional touch control and intelligent human-machine interaction. Apart from physical touch or pressure sensing, proximity sensing as a complementary function can extend the detection mode of common single functional tactile sensors. In this work, we present a transparent, matrix-structure dual functional capacitive sensor which integrates the capability of proximity and pressure sensing in one device, and the excellent spatial resolution offered by the isolated response of capacitive pixels enables us to realize precise location identification of approaching objects and loaded pressure with fast response, high stability and high reversibility.展开更多
In practice, the failure rate of most equipment exhibits different tendencies at different stages and even its failure rate curve behaves a multimodal trace during its life cycle. As a result,traditionally evaluating ...In practice, the failure rate of most equipment exhibits different tendencies at different stages and even its failure rate curve behaves a multimodal trace during its life cycle. As a result,traditionally evaluating the reliability of equipment with a single model may lead to severer errors.However, if lifetime is divided into several different intervals according to the characteristics of its failure rate, piecewise fitting can more accurately approximate the failure rate of equipment. Therefore, in this paper, failure rate is regarded as a piecewise function, and two kinds of segmented distribution are put forward to evaluate reliability. In order to estimate parameters in the segmented reliability function, Bayesian estimation and maximum likelihood estimation(MLE) of the segmented distribution are discussed in this paper. Since traditional information criterion is not suitable for the segmented distribution, an improved information criterion is proposed to test and evaluate the segmented reliability model in this paper. After a great deal of testing and verification,the segmented reliability model and its estimation methods presented in this paper are proven more efficient and accurate than the traditional non-segmented single model, especially when the change of the failure rate is time-phased or multimodal. The significant performance of the segmented reliability model in evaluating reliability of proximity sensors of leading-edge flap in civil aircraft indicates that the segmented distribution and its estimation method in this paper could be useful and accurate.展开更多
This paper proposes a system for stable ladder climbing of the human-sized four-limbed robot“WAREC-1”,including the following 3 components:(a)Whole-body motion planning;(b)Rung recognition system and(c)Reaction forc...This paper proposes a system for stable ladder climbing of the human-sized four-limbed robot“WAREC-1”,including the following 3 components:(a)Whole-body motion planning;(b)Rung recognition system and(c)Reaction force adjustment.These 3 components guarantee appropriate ladder climbing motion,successful rung grub and proper reaction force distribution at contact points throughout the climbing motion,respectively.With this system,(1)Stable ladder climbing in 2-point contact gait by a human-sized robot and(2)Successful and stable climbing of an irregular ladder(with a higher or inclined rung)in both 3-point and 2-point contact gait with the capability of recognizing the target rung and the corresponding motion planning are realized,which have rarely been realized by former studies.Finally,experiment results and data of the robot ladder climbing are also presented to evaluate the proposed system.展开更多
基金supported by the National Key R&D Program of China(Nos.2022 YFF 1202700 and 2022YFB3203500)National Natural Science Foundation of China(Nos.62225403,62375046,51973024,an d U19A2091)+2 种基金“111”Project(No.B13013)Natur al Sci ence Foundation of Jilin Pro vin ce(No.20230101113JC)the Funding from Jilin Pr ovince(No.20220502002GH).
文摘Recently,electronic skins and fl exible wearable devices have been developed for widespread applications in medical monitoring,artifi cial intelligence,human–machine interaction,and artifi cial prosthetics.Flexible proximity sensors can accurately perceive external objects without contact,introducing a new way to achieve an ultrasensitive perception of objects.This article reviews the progress of fl exible capacitive proximity sensors,fl exible triboelectric proximity sensors,and fl exible gate-enhanced proximity sensors,focusing on their applications in the electronic skin fi eld.Herein,their working mechanism,materials,preparation methods,and research progress are discussed in detail.Finally,we summarize the future challenges in developing fl exible proximity sensors.
基金supported by the National Natural Science Foundation of China(Grant No.61973037)and(Grant No.61871414)Postdoctoral Fundation of China(Grant No.2022M720419)。
文摘The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).
基金funded by the Zhejiang Provincial Natural Science Foundation of China (R5100140)the National Natural Science Foundation of China (40871100)the Science and Technology Project of Zhejiang Province, China(2011C13010)
文摘Soil moisture and salinity are two crucial coastal saline soil variables, which influence the soil quality and agricultural productivity in the reclaimed coastal region. Accurately characterizing the spatial variability of these soil parameters is critical for the rational development and utilization of tideland resources. In the present study, the spatial variability of soil moisture and salinity in the reclaimed area of Hangzhou gulf, Shangyu City, Zhejiang Province, China, was detected using the data acquired from radar image and the proximal sensor EM38. Soil moisture closely correlates radar scattering coefficient, and a simplified inversion model was built based on a backscattering coefficient extracted from multi-polarization data of ALOS/PALSAR and in situ soil moisture measured by a time domain reflectometer to detect soil moisture variations. The result indicated a higher accuracy of soil moisture inversion by the HH polarization mode than those by the HV mode. Soil salinity is reflected by soil apparent electrical conductivity (ECa). Further, ECa can be rapidly detected by EM38 equipment in situ linked with GPS for characterizing the spatial variability of soil salinity. Based on the strong spatial variability and interactions of soil moisture and salinity, a cokriging interpolation method with auxiliary variable of backscattering coefficient was adopted to map the spatial variability of ECa. When compared with a map of ECa interpolated by the ordinary kriging method, detail was revealed and the accuracy was increased by 15.3%. The results conclude that the integrating active remote sensing and proximal sensors EM38 are effective and acceptable approaches for rapidly and accurately detecting soil moisture and salinity variability in coastal areas, especially in the subtropical coastal zones of China with frequent heavy cloud cover.
文摘As described in this paper, we propose a new haptic interface for a service robot. For safety with service robots working in a space where people live, some notification before collision with an obstacle is desirable. To achieve such a function, we developed a master-slave manipulator system in which the slave manipulator surface is covered with many proximity sensors. Additionally, we developed a haptic device that feeds back proximity sense information to the operator using small vibration motors. We attached the haptic device to the arm of the operator and vibrated the vibration motor corresponding to the sensor. Thereby, the operator was able to ascertain the position of an object near the manipulator, and to make the robot maneuver to avoid it before collision. To confirm the system usefulness, we equipped subjects with the developed proximity sense presentation device and performed a detection-position-specific experiment and an obstacle avoidance experiment in a narrow space. As results of the detection position specific experiment on five subjects, four subjects reported the detection position correctly. The remaining one person failed because of his particular arm shape. Operation experiments conducted in a narrow space showed that all subjects' work was successful when given feedback of proximity sense information. Nobody was successful without proximity sense information. Results of these two experiments demonstrate that this proposed system is useful for obstacle avoidance of a master-slave manipulator system.
文摘Industrial Control Systems(ICS)and SCADA(Supervisory Control and Data Acquisition)systems play a critical role in the management and regulation of critical infrastructure.SCADA systems brings us closer to the real-time application world.All process and equipment control capability is typically provided by a Distributed Control System(DCS)in industries such as power stations,agricultural systems,chemical and water treatment plants.Instead of control through DCS,this paper proposes a SCADA and PLC(Programmable Logic Controller)system to control the ratio control division and the assembly line division inside the chemical plant.A specific design and implementation method for development of SCADA/PLC based real time ratio control and automated assembly line system in a chemical plant is introduced.The assembly line division is further divided into sorting stage,filling stage and the auxiliary stage,which includes the capping unit,labelling unit and then the storage.In the ratio control division,we have defined the levels inside the mixer and ratio of the raw materials through human machine interface(HMI)panel.The ratio of raw materials is kept constant on the basis of flow rates of wild stream and manipulated stream.There is a flexibility in defining new levels and the ratios of the raw materials inside the mixer.But here we taken the predefined levels(low,medium,high)and ratios(3:4,2:1,2:5).Control valves are used for regulating the flow of the compositions.In the assembly line division,the containers are sorted on the basis of size and type of material used i.e.,big sized metallic containers and small sized non-metallic containers by inductive and capacitive proximity sensors.All the processes are facilitated with laser beam type or reflective type sensors on the conveyor system.Building a highly stable and dependable PLC/SCADA system instead of Distributed Control System is required to achieve automatic management and control of chemical industry processes to reduce waste manpower and physical resources,as well as to improve worker safety.
基金This work was supported by the National Natural Science Foundation of China (No. 61204001), and the Fundamental Research Funds for the Central Universities of China (No. 2014QN013). We also thank the Center for Nanoscale Characterization & Devices (CNCD), WNLO of HUST for the use of facilities in support of this work.
文摘Over the past few years, the rapid development of tactile sensing technology has contributed significantly to the realization of intuitional touch control and intelligent human-machine interaction. Apart from physical touch or pressure sensing, proximity sensing as a complementary function can extend the detection mode of common single functional tactile sensors. In this work, we present a transparent, matrix-structure dual functional capacitive sensor which integrates the capability of proximity and pressure sensing in one device, and the excellent spatial resolution offered by the isolated response of capacitive pixels enables us to realize precise location identification of approaching objects and loaded pressure with fast response, high stability and high reversibility.
基金supported by the National Natural Science Foundation of China (Nos. 60672164, 60939003, 61079013, 60879001, 90000871)the Special Project about Humanities and Social Sciences in Ministry of Education of China (No. 16JDGC008)+2 种基金National Natural Science Funds and Civil Aviation Mutual Funds (Nos. U1533128 and U1233114)Study On Reusing Sketch User Interface Oriented Design Knowledge (No. 16KJA520003)Six Talent Peaks Project In Jiangsu Province (No. 2016-XYDXXJS-088)
文摘In practice, the failure rate of most equipment exhibits different tendencies at different stages and even its failure rate curve behaves a multimodal trace during its life cycle. As a result,traditionally evaluating the reliability of equipment with a single model may lead to severer errors.However, if lifetime is divided into several different intervals according to the characteristics of its failure rate, piecewise fitting can more accurately approximate the failure rate of equipment. Therefore, in this paper, failure rate is regarded as a piecewise function, and two kinds of segmented distribution are put forward to evaluate reliability. In order to estimate parameters in the segmented reliability function, Bayesian estimation and maximum likelihood estimation(MLE) of the segmented distribution are discussed in this paper. Since traditional information criterion is not suitable for the segmented distribution, an improved information criterion is proposed to test and evaluate the segmented reliability model in this paper. After a great deal of testing and verification,the segmented reliability model and its estimation methods presented in this paper are proven more efficient and accurate than the traditional non-segmented single model, especially when the change of the failure rate is time-phased or multimodal. The significant performance of the segmented reliability model in evaluating reliability of proximity sensors of leading-edge flap in civil aircraft indicates that the segmented distribution and its estimation method in this paper could be useful and accurate.
基金This research was funded by ImPACT TRC Program of Council for Science,Technology and Innovation(Cabinet Office,Government of Japan)This study was conducted with the support of Research Institute for Science and Engineering,Waseda University+3 种基金Future Robotics Organization,Waseda University,and as a part of the humanoid project at the Humanoid Robotics Institute,Waseda UniversityThis research was also partially supported by SolidWorks Japan K.KDYDEN Corporationand KITO Corporation whom we thank for their financial and technical support.
文摘This paper proposes a system for stable ladder climbing of the human-sized four-limbed robot“WAREC-1”,including the following 3 components:(a)Whole-body motion planning;(b)Rung recognition system and(c)Reaction force adjustment.These 3 components guarantee appropriate ladder climbing motion,successful rung grub and proper reaction force distribution at contact points throughout the climbing motion,respectively.With this system,(1)Stable ladder climbing in 2-point contact gait by a human-sized robot and(2)Successful and stable climbing of an irregular ladder(with a higher or inclined rung)in both 3-point and 2-point contact gait with the capability of recognizing the target rung and the corresponding motion planning are realized,which have rarely been realized by former studies.Finally,experiment results and data of the robot ladder climbing are also presented to evaluate the proposed system.