An idea of estimating the direct sequence spread spectrum(DSSS) signal pseudo-noise(PN) sequence is presented. Without the apriority knowledge about the DSSS signal in the non-cooperation condition, we propose a s...An idea of estimating the direct sequence spread spectrum(DSSS) signal pseudo-noise(PN) sequence is presented. Without the apriority knowledge about the DSSS signal in the non-cooperation condition, we propose a self-organizing feature map(SOFM) neural network algorithm to detect and identify the PN sequence. A non-supervised learning algorithm is proposed according the Kohonen rule in SOFM. The blind algorithm can also estimate the PN sequence in a low signal-to-noise(SNR) and computer simulation demonstrates that the algorithm is effective. Compared with the traditional correlation algorithm based on slip-correlation, the proposed algorithm's bit error rate(BER) and complexity are lower.展开更多
This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) dire...This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) direct sequence spread spectrum (DS-SS) signals with residual carrier. This approach needs some given parameters, such as the period and code rate of PN sequence. The received signal is firstly sampled and divided into non-overlapping signal vectors according to a temporal window, whose duration is two periods of PN sequence. An autocorrelation matrix is then computed and accumulated by those signal vectors one by one. The PN sequence with residual carrier can be estimated by the principal eigenvector of the autocorrelation matrix. Further more, a digital phase lock loop is used to process the estimated PN sequence, it estimates and tracks the residual carrier and removes the residual carrier in the end. Theory analysis and computer simulation results show that this approach can effectively realize the PN sequence blind estimation from the input DS-SS signals with residual carrier in lower SNR.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61271168
文摘An idea of estimating the direct sequence spread spectrum(DSSS) signal pseudo-noise(PN) sequence is presented. Without the apriority knowledge about the DSSS signal in the non-cooperation condition, we propose a self-organizing feature map(SOFM) neural network algorithm to detect and identify the PN sequence. A non-supervised learning algorithm is proposed according the Kohonen rule in SOFM. The blind algorithm can also estimate the PN sequence in a low signal-to-noise(SNR) and computer simulation demonstrates that the algorithm is effective. Compared with the traditional correlation algorithm based on slip-correlation, the proposed algorithm's bit error rate(BER) and complexity are lower.
基金supported by the National Natural Science Foundation of China (10776040 60602057)+4 种基金Program for New Century Excellent Talents in University (NCET)the Project of Key Laboratory of Signal and Information Processing of Chongqing (CSTC2009CA2003)the Natural Science Foundation of Chongqing Science and Technology Commission (CSTC2009BB2287)the Natural Science Foundation of Chongqing Municipal Education Commission (KJ060509 KJ080517)
文摘This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) direct sequence spread spectrum (DS-SS) signals with residual carrier. This approach needs some given parameters, such as the period and code rate of PN sequence. The received signal is firstly sampled and divided into non-overlapping signal vectors according to a temporal window, whose duration is two periods of PN sequence. An autocorrelation matrix is then computed and accumulated by those signal vectors one by one. The PN sequence with residual carrier can be estimated by the principal eigenvector of the autocorrelation matrix. Further more, a digital phase lock loop is used to process the estimated PN sequence, it estimates and tracks the residual carrier and removes the residual carrier in the end. Theory analysis and computer simulation results show that this approach can effectively realize the PN sequence blind estimation from the input DS-SS signals with residual carrier in lower SNR.