To resolve the completeness and independence of an invariant set derived by the traditional method, a systematic method for deriving a complete set of pseudo-Zernike moment similarity (translation, scale and rotation...To resolve the completeness and independence of an invariant set derived by the traditional method, a systematic method for deriving a complete set of pseudo-Zernike moment similarity (translation, scale and rotation) invariants is described. First, the relationship between pseudo-Zernike moments of the original image and those of the image having the same shape but distinct orientation and scale is established. Based on this relationship, a complete set of similarity invariants can be expressed as a linear combination of the original pseudo-Zernike moments of the same order and lower order. The problem of image reconstruction from a finite set of the pseudo-Zernike moment invariants (PZMIs) is also investigated. Experimental results show that the proposed PZMIs have better performance than complex moment invariants.展开更多
In order to discover characteristics of various kinds of weld pool image and identify a single image, seven image features are extracted to describe the corresponding surface formation quality by the moment iavariants...In order to discover characteristics of various kinds of weld pool image and identify a single image, seven image features are extracted to describe the corresponding surface formation quality by the moment iavariants method. An image feature matrix is composed by the seven characteristics. Then the matrix is projected on a line through the Fisher criterion in order to entirely distinguish various kinds of image features. And finally, transforming a seven-dimensional problem into a one-dimensional problem has been done. Compared with the three kinds of samples included in the arc welding process and quality weld pool visual image database, the images are classified into the three kinds such as superior weld formation in the condition of optimal gas flow, poor weld formation image in the condition of insuffwient gas flow, inferior weld formation in the condition of too low gas flow. Experiments show that the Fisher classification method based on moment invariants can recognize various weld pool images effectively, and it achieves a correct recognizable rate of 100%.展开更多
Axis orbit is an important characteristic to be used in the condition monitoring and diagnosis system of rotating machine. The wavelet moment has the invariant to the translation, scaling and rotation. A method, which...Axis orbit is an important characteristic to be used in the condition monitoring and diagnosis system of rotating machine. The wavelet moment has the invariant to the translation, scaling and rotation. A method, which uses a neural network based on Radial Basis Function (RBF) and wavelet moment invariants to identify the orbit of shaft centerline of rotating machine is discussed in this paper. The principle and its application procedure of the method are introduced in detail. It gives simulation results of automatic identification for three typical axis orbits. It is proved that the method is effective and practicable.展开更多
Recognizing various traffic signs,especially the popular circular traffic signs,is an essential task for implementing advanced driver assistance system.To recognize circular traffic signs with high accuracy and robust...Recognizing various traffic signs,especially the popular circular traffic signs,is an essential task for implementing advanced driver assistance system.To recognize circular traffic signs with high accuracy and robustness,a novel approach which uses the so-called improved constrained binary fast radial symmetry(ICBFRS) detector and pseudo-zernike moments based support vector machine(PZM-SVM) classifier is proposed.In the detection stage,the scene image containing the traffic signs will be converted into Lab color space for color segmentation.Then the ICBFRS detector can efficiently capture the position and scale of sign candidates within the scene by detecting the centers of circles.In the classification stage,once the candidates are cropped out of the image,pseudo-zernike moments are adopted to represent the features of extracted pictogram,which are then fed into a support vector machine to classify different traffic signs.Experimental results under different lighting conditions indicate that the proposed method has robust detection effect and high classification accuracy.展开更多
In this paper, we propose a new method that combines collage error in fractal domain and Hu moment invariants for image retrieval with a statistical method - variable bandwidth Kernel Density Estimation (KDE). The pro...In this paper, we propose a new method that combines collage error in fractal domain and Hu moment invariants for image retrieval with a statistical method - variable bandwidth Kernel Density Estimation (KDE). The proposed method is called CHK (KDE of Collage error and Hu moment) and it is tested on the Vistex texture database with 640 natural images. Experimental results show that the Average Retrieval Rate (ARR) can reach into 78.18%, which demonstrates that the proposed method performs better than the one with parameters respectively as well as the commonly used histogram method both on retrieval rate and retrieval time.展开更多
The traditional inspection methods are mostly based on manual inspection which is very likely to make erroneous judgments due to personal subjectivity or eye fatigue, and can't satisfy the accuracy. To overcome these...The traditional inspection methods are mostly based on manual inspection which is very likely to make erroneous judgments due to personal subjectivity or eye fatigue, and can't satisfy the accuracy. To overcome these difficulties, we develop a machine vision inspection system. We first compare several kinds of methods for feature extraction and classification, and then present a real-time automated visual inspection system for copper strips surface (CSS) defects based on compound moment invariants and support vector machine (SVM). The proposed method first processes images collected by hardware system, and then extracts feature characteristics based on grayscale characteristics and morphologic characteristics (Hu and Zernike compound moment invariants). Finally, we use SVM to classify the CSS defects. Furthermore, performance comparisons among SVM, back propagation (BP) and radial basis function (RBF) neural networks have been involved. Experimental results show that the proposed approach achieves an accuracy of 95.8% in detecting CSS defects.展开更多
3D objects can be stored in computer of different describing ways, such as point set, polyline, polygonal surface and Euclidean distance map. Moment invariants of different orders may have the different magnitude. A m...3D objects can be stored in computer of different describing ways, such as point set, polyline, polygonal surface and Euclidean distance map. Moment invariants of different orders may have the different magnitude. A method for normalizing moments of 3D objects is proposed, which can set the values of moments of different orders roughly in the same range and be applied to different 3D data formats universally. Then accurate computation of moments for several objects is presented and experiments show that this kind of normalization is very useful for moment invariants in 3D objects analysis and recognition.展开更多
In this paper,we advanced a new fast algorithm of 2-D moment in-variant based on image projection,by means of projection transformation it can com-press the information of a 2-D image into 1-D information.Thus,the amo...In this paper,we advanced a new fast algorithm of 2-D moment in-variant based on image projection,by means of projection transformation it can com-press the information of a 2-D image into 1-D information.Thus,the amount ofcomputation and data size are decreased greatly and,moreover,the projection trans-formation,which is merely an operation of additions,is easier to be achieved onhardwares.The results of computer simulation proved the correctness and quicknessof our method.展开更多
Image recognition is widely used in different application areas such as shape recognition, gesture recognition and eye recognition. In this research, we introduced image recognition using efficient invariant moments a...Image recognition is widely used in different application areas such as shape recognition, gesture recognition and eye recognition. In this research, we introduced image recognition using efficient invariant moments and Principle Component Analysis (PCA) for gray and color images using different number of invariant moments. We used twelve moments for each image of gray images and Hu’s seven moments for color images to decrease dimensionality of the problem to 6 PCA’s for gray and 5 PCA’s for color images and hence the recognition time. PCA is then employed to decrease dimensionality of the problem and hence the recognition time and this is our main objective. The PCA is derived from Karhunen-Loeve’s transformation. Given an N-dimensional vector representation of each image, PCA tends to find a K-dimensional subspace whose basis vectors correspond to the maximum variance direction in the original image space. This new subspace is normally lower dimensional (K N). Three known datasets are used. The first set is the known Flower dataset. The second is the Africans dataset, and the third is the Shapes dataset. All these datasets were used by many researchers.展开更多
In this paper,we first derive two types of transformed Franklin polynomial:substituted and weighted radial Franklin polynomials.Two radial orthogonal moments are proposed based on these two types of polynomials,namely...In this paper,we first derive two types of transformed Franklin polynomial:substituted and weighted radial Franklin polynomials.Two radial orthogonal moments are proposed based on these two types of polynomials,namely substituted Franklin-Fourier moments and weighted Franklin-Fourier moments(SFFMs and WFFMs),which are orthogonal in polar coordinates.The radial kernel functions of SFFMs and WFFMs are transformed Franklin functions and Franklin functions are composed of a class of complete orthogonal splines function system of degree one.Therefore,it provides the possibility of avoiding calculating high order polynomials,and thus the accurate values of SFFMs and WFFMs can be obtained directly with little computational cost.Theoretical and experimental results show that Franklin functions are not well suited for constructing higher-order moments of SFFMs and WFFMs,but compared with traditional orthogonal moments(e.g.,BFMs,OFMs and ZMs)in polar coordinates,the proposed two types of Franklin-Fourier Moments have better performance respectively in lower-order moments.展开更多
基金The National Natural Science Foundation of China(No.61071192,61073138)
文摘To resolve the completeness and independence of an invariant set derived by the traditional method, a systematic method for deriving a complete set of pseudo-Zernike moment similarity (translation, scale and rotation) invariants is described. First, the relationship between pseudo-Zernike moments of the original image and those of the image having the same shape but distinct orientation and scale is established. Based on this relationship, a complete set of similarity invariants can be expressed as a linear combination of the original pseudo-Zernike moments of the same order and lower order. The problem of image reconstruction from a finite set of the pseudo-Zernike moment invariants (PZMIs) is also investigated. Experimental results show that the proposed PZMIs have better performance than complex moment invariants.
基金Fund projects: National Natural Science Foundation of China( No 51075214)funding.
文摘In order to discover characteristics of various kinds of weld pool image and identify a single image, seven image features are extracted to describe the corresponding surface formation quality by the moment iavariants method. An image feature matrix is composed by the seven characteristics. Then the matrix is projected on a line through the Fisher criterion in order to entirely distinguish various kinds of image features. And finally, transforming a seven-dimensional problem into a one-dimensional problem has been done. Compared with the three kinds of samples included in the arc welding process and quality weld pool visual image database, the images are classified into the three kinds such as superior weld formation in the condition of optimal gas flow, poor weld formation image in the condition of insuffwient gas flow, inferior weld formation in the condition of too low gas flow. Experiments show that the Fisher classification method based on moment invariants can recognize various weld pool images effectively, and it achieves a correct recognizable rate of 100%.
基金the Programming of the National Ministry of Education(20002175)
文摘Axis orbit is an important characteristic to be used in the condition monitoring and diagnosis system of rotating machine. The wavelet moment has the invariant to the translation, scaling and rotation. A method, which uses a neural network based on Radial Basis Function (RBF) and wavelet moment invariants to identify the orbit of shaft centerline of rotating machine is discussed in this paper. The principle and its application procedure of the method are introduced in detail. It gives simulation results of automatic identification for three typical axis orbits. It is proved that the method is effective and practicable.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team (2008)Program for New Centoury Excellent Talents in University(NCET-09-0045)+1 种基金the National Nat-ural Science Foundation of China (60773044,61004059)the Natural Science Foundation of Beijing(4101001)
文摘Recognizing various traffic signs,especially the popular circular traffic signs,is an essential task for implementing advanced driver assistance system.To recognize circular traffic signs with high accuracy and robustness,a novel approach which uses the so-called improved constrained binary fast radial symmetry(ICBFRS) detector and pseudo-zernike moments based support vector machine(PZM-SVM) classifier is proposed.In the detection stage,the scene image containing the traffic signs will be converted into Lab color space for color segmentation.Then the ICBFRS detector can efficiently capture the position and scale of sign candidates within the scene by detecting the centers of circles.In the classification stage,once the candidates are cropped out of the image,pseudo-zernike moments are adopted to represent the features of extracted pictogram,which are then fed into a support vector machine to classify different traffic signs.Experimental results under different lighting conditions indicate that the proposed method has robust detection effect and high classification accuracy.
基金Supported by the Fundamental Research Funds for the Central Universities (No. NS2012093)
文摘In this paper, we propose a new method that combines collage error in fractal domain and Hu moment invariants for image retrieval with a statistical method - variable bandwidth Kernel Density Estimation (KDE). The proposed method is called CHK (KDE of Collage error and Hu moment) and it is tested on the Vistex texture database with 640 natural images. Experimental results show that the Average Retrieval Rate (ARR) can reach into 78.18%, which demonstrates that the proposed method performs better than the one with parameters respectively as well as the commonly used histogram method both on retrieval rate and retrieval time.
基金Supported by the National Natural Science Foundation of China (No. 60872096) and the Fundamental Research Funds for the Central Universities (No. 2009B31914).
文摘The traditional inspection methods are mostly based on manual inspection which is very likely to make erroneous judgments due to personal subjectivity or eye fatigue, and can't satisfy the accuracy. To overcome these difficulties, we develop a machine vision inspection system. We first compare several kinds of methods for feature extraction and classification, and then present a real-time automated visual inspection system for copper strips surface (CSS) defects based on compound moment invariants and support vector machine (SVM). The proposed method first processes images collected by hardware system, and then extracts feature characteristics based on grayscale characteristics and morphologic characteristics (Hu and Zernike compound moment invariants). Finally, we use SVM to classify the CSS defects. Furthermore, performance comparisons among SVM, back propagation (BP) and radial basis function (RBF) neural networks have been involved. Experimental results show that the proposed approach achieves an accuracy of 95.8% in detecting CSS defects.
基金Supported by National Key Basic Research Program(No.2004CB318006)National Natural Science Foundation of China(Nos.60873164,60573154,60533090,61379082 and 61227802)
文摘3D objects can be stored in computer of different describing ways, such as point set, polyline, polygonal surface and Euclidean distance map. Moment invariants of different orders may have the different magnitude. A method for normalizing moments of 3D objects is proposed, which can set the values of moments of different orders roughly in the same range and be applied to different 3D data formats universally. Then accurate computation of moments for several objects is presented and experiments show that this kind of normalization is very useful for moment invariants in 3D objects analysis and recognition.
文摘In this paper,we advanced a new fast algorithm of 2-D moment in-variant based on image projection,by means of projection transformation it can com-press the information of a 2-D image into 1-D information.Thus,the amount ofcomputation and data size are decreased greatly and,moreover,the projection trans-formation,which is merely an operation of additions,is easier to be achieved onhardwares.The results of computer simulation proved the correctness and quicknessof our method.
文摘Image recognition is widely used in different application areas such as shape recognition, gesture recognition and eye recognition. In this research, we introduced image recognition using efficient invariant moments and Principle Component Analysis (PCA) for gray and color images using different number of invariant moments. We used twelve moments for each image of gray images and Hu’s seven moments for color images to decrease dimensionality of the problem to 6 PCA’s for gray and 5 PCA’s for color images and hence the recognition time. PCA is then employed to decrease dimensionality of the problem and hence the recognition time and this is our main objective. The PCA is derived from Karhunen-Loeve’s transformation. Given an N-dimensional vector representation of each image, PCA tends to find a K-dimensional subspace whose basis vectors correspond to the maximum variance direction in the original image space. This new subspace is normally lower dimensional (K N). Three known datasets are used. The first set is the known Flower dataset. The second is the Africans dataset, and the third is the Shapes dataset. All these datasets were used by many researchers.
基金supported by the National Natural Science Foundation of China(61572092,61702403)the Fundamental Research Funds for the Central Universities(JB170308,JBF180301)+2 种基金the Project Funded by China Postdoctoral Science Foundation(2018M633473)the Basic Research Project of Weinan Science and Technology Bureau(ZDYF-JCYJ-17)the Project of Shaanxi Provincial Supports Discipline(Mathematics)
文摘In this paper,we first derive two types of transformed Franklin polynomial:substituted and weighted radial Franklin polynomials.Two radial orthogonal moments are proposed based on these two types of polynomials,namely substituted Franklin-Fourier moments and weighted Franklin-Fourier moments(SFFMs and WFFMs),which are orthogonal in polar coordinates.The radial kernel functions of SFFMs and WFFMs are transformed Franklin functions and Franklin functions are composed of a class of complete orthogonal splines function system of degree one.Therefore,it provides the possibility of avoiding calculating high order polynomials,and thus the accurate values of SFFMs and WFFMs can be obtained directly with little computational cost.Theoretical and experimental results show that Franklin functions are not well suited for constructing higher-order moments of SFFMs and WFFMs,but compared with traditional orthogonal moments(e.g.,BFMs,OFMs and ZMs)in polar coordinates,the proposed two types of Franklin-Fourier Moments have better performance respectively in lower-order moments.