In this paper we study a generalization of self-similar solutions. We show that just as for the solutions to the Navier-Stokes equations these supposedly singular solution reduce to the zero solution.
Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and th...Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and the indentation strain rate become constant after a transient period. Moreover, the FE simulation reveals that both the contours of equivalent stress and equivalent plastic strain rate underneath the indenter evolve with geometrical self-similarity. This suggests that pseudo-steady indentation creep occurs in the region beneath the indenter. The representative points in the region are defined as the ones with the equivalent stress equal to the representative stress. In addition, it is revealed that the proportionality between indentation strain rate and equivalent plastic strain rate holds at the representative points during the pseudo-steady indentation creep of a power law material. A control volume (CV) beneath the indenter, which governs the indenter velocity, is identified. The size of the CV at the indented surface is approximately 2.5 times the size of the impression. The stress exponent for creep can be obtained from the pseudosteady indentation creep data. These results demonstrate that the CSLR testing technique can be used to evaluate creep parameters with the same accuracy as conventional uniaxial creep tests.展开更多
A simple wave is defined as a flow in a region whose image is a curve in the phase space. It is well known that "the theory of simple waves is fundamental in building up the solutions of flow problems out of elementa...A simple wave is defined as a flow in a region whose image is a curve in the phase space. It is well known that "the theory of simple waves is fundamental in building up the solutions of flow problems out of elementary flow patterns" see Courant and Friedrichs's chassical book "Supersonic Flow and Shock Waves". This paper mainly concerned with the geometric construction of simple waves for the 2D pseudo-steady compressible Euler system. Based on the geometric interpretation, the expansion or compression simple wave flow construction around a pseudo-stream line with a bend part are constructed. It is a building block that appears in the global solution to four contact discontinuities Riemann problems.展开更多
文摘In this paper we study a generalization of self-similar solutions. We show that just as for the solutions to the Navier-Stokes equations these supposedly singular solution reduce to the zero solution.
文摘Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and the indentation strain rate become constant after a transient period. Moreover, the FE simulation reveals that both the contours of equivalent stress and equivalent plastic strain rate underneath the indenter evolve with geometrical self-similarity. This suggests that pseudo-steady indentation creep occurs in the region beneath the indenter. The representative points in the region are defined as the ones with the equivalent stress equal to the representative stress. In addition, it is revealed that the proportionality between indentation strain rate and equivalent plastic strain rate holds at the representative points during the pseudo-steady indentation creep of a power law material. A control volume (CV) beneath the indenter, which governs the indenter velocity, is identified. The size of the CV at the indented surface is approximately 2.5 times the size of the impression. The stress exponent for creep can be obtained from the pseudosteady indentation creep data. These results demonstrate that the CSLR testing technique can be used to evaluate creep parameters with the same accuracy as conventional uniaxial creep tests.
基金supported by the National Natural Science Foundation of China (No.0971130)the Shanghai Leading Academic Discipline Project (No.J50101)
文摘A simple wave is defined as a flow in a region whose image is a curve in the phase space. It is well known that "the theory of simple waves is fundamental in building up the solutions of flow problems out of elementary flow patterns" see Courant and Friedrichs's chassical book "Supersonic Flow and Shock Waves". This paper mainly concerned with the geometric construction of simple waves for the 2D pseudo-steady compressible Euler system. Based on the geometric interpretation, the expansion or compression simple wave flow construction around a pseudo-stream line with a bend part are constructed. It is a building block that appears in the global solution to four contact discontinuities Riemann problems.