Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are...This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.展开更多
In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Mill...In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.展开更多
In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible plat...In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety.展开更多
Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ ...Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.展开更多
The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is...The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.展开更多
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend...This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.展开更多
This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis techniq...This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results.展开更多
Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi...Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.展开更多
Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challeng...Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results.展开更多
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons...Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.展开更多
Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Call...Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.展开更多
traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to...traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to this method, which is irrational to some extent in the seismic design of slope. Second, only peak ground acceleration (PGA) is considered, and the effects of shaking frequency and duration on slope stability are neglected. And then, based on the theory of elastic wave and the summarized geological model, this paper put forwards an improved method of pseudo-method by using the theory of elastic wave and Hilbert-Huang transform. The improved pseudostatic method gives reasonable considerations to the time-frequency effects of seismic wave and its rationality has been verified by the shaking table test. This method can evaluate the safety of a slope, the happening time and the scale of landslides. At the same time, this method also can improve the high accuracy of the evaluation of the safety of the slope.展开更多
The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to...The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to a challenging problem:coupling the dynamics of risers with a new hang-off system combined with multiple structures and complex constraints.To accurately analyze the dynamic responses of the coupled system,a coupled dynamic model is established based on the Euler-Bernoulli beam-column theory and penalty function method.A comprehensive analysis method is proposed for coupled dynamic analysis by combining the finite element method and the Newmarkβmethod.An analysis program is also developed in MATLAB for dynamic simulation.The simulation results show that the dynamic performances of the risers at the top part are significantly improved by the new hang-off system,especially the novel design,which includes the centralizer and articulation joint.The bending moment and lateral deformation of the risers at the top part decrease,while the hang-off joint experiences a great bending moment at the bottom of the lateral restraint area which requires particular attention in design and application.The platform navigation speed range under the safety limits of risers expands with the new hang-off system in use.展开更多
A fractal geometric boundary with natural wall features is introduced into a hybrid lattice-Boltzmann-method(LBM)multiphase model. The physical model of cavitation bubble collapse near the irregular geometric wall is ...A fractal geometric boundary with natural wall features is introduced into a hybrid lattice-Boltzmann-method(LBM)multiphase model. The physical model of cavitation bubble collapse near the irregular geometric wall is established to study the thermodynamic characteristics of the bubble collapse. Due to the lack of periodicity, symmetry, spatial uniformity and obvious correlation in the LBM simulation of the bubble collapse near the fractal wall, the morphological analysis based on Minkowski functional is introduced into the thermodynamic investigation of cavitation bubble so as to analyze and obtain the effective information. The results show that the Minkowski functional method can employed to study the temperature information in complex physical fields hierarchically and quantitatively. The high/low temperature region of the cavitation flow is explored, and thermal effect between irregular and fractal geometric wall and cavitation bubble can be revealed. It illustrates that LBM and morphological analysis complement each other, and morphological analysis can also be used as an optional and potential tool in research field of complex multiphase flows.展开更多
Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanal...Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy.展开更多
Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for ...Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials.展开更多
Background:The aim of this study was to investigate the influence of marking meth-ods on the outcomes of body composition analysis and provide guidance for the se-lection of marking methods in mouse body composition a...Background:The aim of this study was to investigate the influence of marking meth-ods on the outcomes of body composition analysis and provide guidance for the se-lection of marking methods in mouse body composition analysis.Methods:Male C57BL/6J mice aged 6 weeks were randomly assigned for pre-and post-ear tagging measurements.The body composition of the mice was measured using a small animal body composition analyzer,which provided measurements of the mass of fat,lean,and free fluid.Then,the mass of fat,lean and free fluid to body weight ratio was gained.Further data analysis was conducted to obtain the range and coeffi-cient of variation in body composition measurements for each mouse.The distribution of fat and lean tissue in the mice was also analyzed by comparing the fat-to-lean ratio.Results:(1)The mass of all body composition components in the ear tagging group was significantly lower than that in the control group.(2)There was a significant in-crease in the range and coefficient of variation of body composition measurements between the ear tagging group and the control group.(3)The fat-to-lean ratio in the ear tagging group was significantly lower than that in the control group.Conclusions:Ear tagging significantly lowered the results of body composition analy-sis in mice and higher the results of measurement error.Therefore,ear tagging should be avoided as much as possible when conducting body composition analysis experi-ments in mice.展开更多
Very low frequency(VLF)signals are propagated between the ground-ionosphere.Multimode interference will cause the phase to show oscillatory changes with distance while propagating at night,leading to abnormalities in ...Very low frequency(VLF)signals are propagated between the ground-ionosphere.Multimode interference will cause the phase to show oscillatory changes with distance while propagating at night,leading to abnormalities in the received VLF signal.This study uses the VLF signal received in Qingdao City,Shandong Province,from the Russian Alpha navigation system to explore the multimode interference problem of VLF signal propagation.The characteristics of the effect of multimode interference phenomena on the phase are analyzed according to the variation of the phase of the VLF signal.However,the phase of VLF signals will also be affected by the X-ray and energetic particles that are released during the eruption of solar flares,therefore the two phenomena are studied in this work.It is concluded that the X-ray will not affect the phase of VLF signals at night,but the energetic particles will affect the phase change,and the influence of energetic particles should be excluded in the study of multimode interference phenomena.Using VLF signals for navigation positioning in degraded or unavailable GPS conditions is of great practical significance for VLF navigation systems as it can avoid the influence of multimode interference and improve positioning accuracy.展开更多
The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of ran...The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.展开更多
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
基金supported by the National Natural Science Foundation of China(Grant Nos.52109144,52025094 and 52222905).
文摘This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.
基金sponsored by the Graduate Student Research and Innovation Fund of Xinyang Normal University under No.2024KYJJ012.
文摘In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.
基金the National Natural Science Foundation of China(No.U20A20328).
文摘In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.11872013).
文摘Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.
基金Financial support for this research was provided by the National Natural Science Foundation of China (Grant No.52222111)。
文摘The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.
基金supported by a grant from the National Science and Technology Council of the Republic of China(Grant Number:MOST 112-2221-E-006-048-MY2).
文摘This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.
基金supported by the National Natural Science Foundation of China(Grant Nos.11871428 and 12071214)the Natural Science Foundation for Colleges and Universities of Jiangsu Province of China(Grant No.20KJB110011)+1 种基金supported by the National Science Foundation(Grant No.DMS-1620335)and the Simons Foundation(Grant No.637716)supported by the National Natural Science Foundation of China(Grant Nos.11871428 and 12272347).
文摘This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results.
基金supported by the National Natural Science Foundation of China (Nos.52374078 and 52074043)the Fundamental Research Funds for the Central Universities (No.2023CDJKYJH021)。
文摘Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through large Research Project under Grant Number RGP2/302/45supported by the Deanship of Scientific Research,Vice Presidency forGraduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Grant Number A426).
文摘Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901).
文摘Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.
文摘Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.
基金supported in part by National Science Foundation of China (Contract NO. 41030742)Guangxi Science Foundation and the Program for Science & Technology of Henan Province in China (Grant No. 142300410200)
文摘traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to this method, which is irrational to some extent in the seismic design of slope. Second, only peak ground acceleration (PGA) is considered, and the effects of shaking frequency and duration on slope stability are neglected. And then, based on the theory of elastic wave and the summarized geological model, this paper put forwards an improved method of pseudo-method by using the theory of elastic wave and Hilbert-Huang transform. The improved pseudostatic method gives reasonable considerations to the time-frequency effects of seismic wave and its rationality has been verified by the shaking table test. This method can evaluate the safety of a slope, the happening time and the scale of landslides. At the same time, this method also can improve the high accuracy of the evaluation of the safety of the slope.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271300,52071337,and 51809279)the National Key Research and Development Program of China(Grant No.2022YFC2806501)the High-tech Ship Research Projects Sponsored by MIIT(Grant No.CBG2N21-4-2-5).
文摘The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to a challenging problem:coupling the dynamics of risers with a new hang-off system combined with multiple structures and complex constraints.To accurately analyze the dynamic responses of the coupled system,a coupled dynamic model is established based on the Euler-Bernoulli beam-column theory and penalty function method.A comprehensive analysis method is proposed for coupled dynamic analysis by combining the finite element method and the Newmarkβmethod.An analysis program is also developed in MATLAB for dynamic simulation.The simulation results show that the dynamic performances of the risers at the top part are significantly improved by the new hang-off system,especially the novel design,which includes the centralizer and articulation joint.The bending moment and lateral deformation of the risers at the top part decrease,while the hang-off joint experiences a great bending moment at the bottom of the lateral restraint area which requires particular attention in design and application.The platform navigation speed range under the safety limits of risers expands with the new hang-off system in use.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11874140 and 12174085)Basic Science (Natural Science) Research Project for the Universities of Jiangsu Province (Grant No. 23KJD140002)the Natural Science Foundation of Nantong (Grant No. JC2023081)。
文摘A fractal geometric boundary with natural wall features is introduced into a hybrid lattice-Boltzmann-method(LBM)multiphase model. The physical model of cavitation bubble collapse near the irregular geometric wall is established to study the thermodynamic characteristics of the bubble collapse. Due to the lack of periodicity, symmetry, spatial uniformity and obvious correlation in the LBM simulation of the bubble collapse near the fractal wall, the morphological analysis based on Minkowski functional is introduced into the thermodynamic investigation of cavitation bubble so as to analyze and obtain the effective information. The results show that the Minkowski functional method can employed to study the temperature information in complex physical fields hierarchically and quantitatively. The high/low temperature region of the cavitation flow is explored, and thermal effect between irregular and fractal geometric wall and cavitation bubble can be revealed. It illustrates that LBM and morphological analysis complement each other, and morphological analysis can also be used as an optional and potential tool in research field of complex multiphase flows.
基金funded by the National Natural Science Foundation of China(NSFC)the Chinese Academy of Sciences(CAS)(grant No.U2031209)the National Natural Science Foundation of China(NSFC,grant Nos.11872128,42174192,and 91952111)。
文摘Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy.
基金Project supported by the National Natural Science Foundation of China (No.12172001)the Anhui Provincial Natural Science Foundation of China (No.2208085Y01)+1 种基金the University Natural Science Research Project of Anhui Province of China (No.2022AH020029)the Housing and Urban-Rural Development Science and Technology Project of Anhui Province of China (No.2023-YF129)。
文摘Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials.
文摘Background:The aim of this study was to investigate the influence of marking meth-ods on the outcomes of body composition analysis and provide guidance for the se-lection of marking methods in mouse body composition analysis.Methods:Male C57BL/6J mice aged 6 weeks were randomly assigned for pre-and post-ear tagging measurements.The body composition of the mice was measured using a small animal body composition analyzer,which provided measurements of the mass of fat,lean,and free fluid.Then,the mass of fat,lean and free fluid to body weight ratio was gained.Further data analysis was conducted to obtain the range and coeffi-cient of variation in body composition measurements for each mouse.The distribution of fat and lean tissue in the mice was also analyzed by comparing the fat-to-lean ratio.Results:(1)The mass of all body composition components in the ear tagging group was significantly lower than that in the control group.(2)There was a significant in-crease in the range and coefficient of variation of body composition measurements between the ear tagging group and the control group.(3)The fat-to-lean ratio in the ear tagging group was significantly lower than that in the control group.Conclusions:Ear tagging significantly lowered the results of body composition analy-sis in mice and higher the results of measurement error.Therefore,ear tagging should be avoided as much as possible when conducting body composition analysis experi-ments in mice.
基金supported by the National Natural Science Foundation of China(U1704134)。
文摘Very low frequency(VLF)signals are propagated between the ground-ionosphere.Multimode interference will cause the phase to show oscillatory changes with distance while propagating at night,leading to abnormalities in the received VLF signal.This study uses the VLF signal received in Qingdao City,Shandong Province,from the Russian Alpha navigation system to explore the multimode interference problem of VLF signal propagation.The characteristics of the effect of multimode interference phenomena on the phase are analyzed according to the variation of the phase of the VLF signal.However,the phase of VLF signals will also be affected by the X-ray and energetic particles that are released during the eruption of solar flares,therefore the two phenomena are studied in this work.It is concluded that the X-ray will not affect the phase of VLF signals at night,but the energetic particles will affect the phase change,and the influence of energetic particles should be excluded in the study of multimode interference phenomena.Using VLF signals for navigation positioning in degraded or unavailable GPS conditions is of great practical significance for VLF navigation systems as it can avoid the influence of multimode interference and improve positioning accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.U22A20594)the Fundamental Research Funds for the Central Universities(Grant No.B230205028)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0694).
文摘The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.