The pseudo-viscous frictional energy dissipator(PVFED) is a new energy dissipator. This dissipator can be widely used in engineering for not only the friction is in direct ratio to velocity, but also the problem of ...The pseudo-viscous frictional energy dissipator(PVFED) is a new energy dissipator. This dissipator can be widely used in engineering for not only the friction is in direct ratio to velocity, but also the problem of viscous energy dissipator mucilage easily leaked has been overcome. The problem of how to get response of the PVFED sys- tem need to be solved before this dissipator can be used widely in engineering. The response calculation methods of the PVFED system on sina load was researched. Wilson-θ,Newmark-β and a precise integration algorithm was used separately to solve the system response and the calculation result in a different time step was compared. It was found from comparison that three calculation results were almost equivalent in a small time step. Calculation precision of Newmark-β and Wilson-θ was reduced and high calculation precision of a precise integration algorithm was kept in a large time step. The results show that it is an effective way to solve the response of a PVFED system by a precise integration method.展开更多
文摘The pseudo-viscous frictional energy dissipator(PVFED) is a new energy dissipator. This dissipator can be widely used in engineering for not only the friction is in direct ratio to velocity, but also the problem of viscous energy dissipator mucilage easily leaked has been overcome. The problem of how to get response of the PVFED sys- tem need to be solved before this dissipator can be used widely in engineering. The response calculation methods of the PVFED system on sina load was researched. Wilson-θ,Newmark-β and a precise integration algorithm was used separately to solve the system response and the calculation result in a different time step was compared. It was found from comparison that three calculation results were almost equivalent in a small time step. Calculation precision of Newmark-β and Wilson-θ was reduced and high calculation precision of a precise integration algorithm was kept in a large time step. The results show that it is an effective way to solve the response of a PVFED system by a precise integration method.