S32654 super austenitic stainless steel(SASS) is widely used in highly corrosive environments. However,its microbiologically influenced corrosion(MIC) behavior has not been reported yet. In this study, the corrosi...S32654 super austenitic stainless steel(SASS) is widely used in highly corrosive environments. However,its microbiologically influenced corrosion(MIC) behavior has not been reported yet. In this study, the corrosion behavior of S32654 SASS caused by a corrosive marine bacterium Pseudomonas aeruginosa was investigated using electrochemical measurements and surface analysis techniques. It was found that P. aeruginosa biofilm accelerated the corrosion rate of S325654 SASS, which was demonstrated by a negative shift of the open circuit potential(EOCP), a decrease of polarization resistance and an increase of corrosion current density in the culture medium. The largest pit depth of the coupons exposed in the P.aeruginosa broth for 14 days was 2.83 m, much deeper than that of the control(1.33 m) in the abiotic culture medium. It was likely that the P. aeruginosa biofilm catalyzed the formation of CrO_3, which was detrimental to the passive film, resulting in MIC pitting corrosion.展开更多
The aiiA gene from Bacillus thuringiensis was cloned into the Pseudomonas/E. coli shuttle vector and transformed into Pseudomonas aeruginosa strain PAO1. Western blotting showed that the AiiA protein was expressed in ...The aiiA gene from Bacillus thuringiensis was cloned into the Pseudomonas/E. coli shuttle vector and transformed into Pseudomonas aeruginosa strain PAO1. Western blotting showed that the AiiA protein was expressed in PAO1. After induction by IPTG for 6 h and 18 h, expression of the aiiA gene in PAO1 completely degraded the quorum sensing autoinducers N-acylhomoserine lactones (AHLs): N-oxododecanoyl-L-homoserine lactone (OdDHL) and N-butyryl-L-homoserine lactone (BHL). The re- duced amount of AHLs in PAO1 was also correlated with decreased expression and production of several virulence factors such as elastase and pyocyanin. AiiA expression also influenced bacterial swarming motility. Most importantly, our studies indicated that aiiA played significant roles in P. aeruginosa biofilm formation and dispersion, as observed by the differences of the biofilm formation on liquid and solid surfaces, and biofilm structures under a scanning electron microscope.展开更多
Bacterial quorum sensing(QS) molecules are involved in the coordination of certain behaviors such as biofilm formation, virulence and antibiotic resistance. QS molecules(autoinducers) and their corresponding recep...Bacterial quorum sensing(QS) molecules are involved in the coordination of certain behaviors such as biofilm formation, virulence and antibiotic resistance. QS molecules(autoinducers) and their corresponding receptors have been recognized as important therapeutic targets for drug-resistant infections and biofilm-associated infections(BAI). This study assessed the multiple biological effects of homogentisic acid y-lactone(HgAL), a furanone derivative. The anti-QS and anti-biofilm effects of HgAL against PAO1 strain were evaluated using CLSM, SEM, HPLC and other biochemical methods The results showed that HgAL could effectively inhibit the production of pyocyanin and extracellular matrix, as well as reduce the adherence ability and biofilm formation of Pseudomonas aeruginosa. Inhibition of virulence is attributed to the suppressive effect of HgAL on biosynthesis of 3-oxo-C12-HSLand C4-HSL(two kinds of QS signaling molecules in P. aeruginosa). Our results support HgAL as a potential agent for prevention of BAI in the healthcare settings.展开更多
基金financially supported by the High Technology Research and Development Program of China(No.2015AA034301)the National Natural Science Foundation of China(Grant Nos.51304041 and U1660118)Fundamental Research Funds for the Central Universities(Grant No.N150204007)
文摘S32654 super austenitic stainless steel(SASS) is widely used in highly corrosive environments. However,its microbiologically influenced corrosion(MIC) behavior has not been reported yet. In this study, the corrosion behavior of S32654 SASS caused by a corrosive marine bacterium Pseudomonas aeruginosa was investigated using electrochemical measurements and surface analysis techniques. It was found that P. aeruginosa biofilm accelerated the corrosion rate of S325654 SASS, which was demonstrated by a negative shift of the open circuit potential(EOCP), a decrease of polarization resistance and an increase of corrosion current density in the culture medium. The largest pit depth of the coupons exposed in the P.aeruginosa broth for 14 days was 2.83 m, much deeper than that of the control(1.33 m) in the abiotic culture medium. It was likely that the P. aeruginosa biofilm catalyzed the formation of CrO_3, which was detrimental to the passive film, resulting in MIC pitting corrosion.
基金the National Natural Science Foundation of China (Grant No. 30570020)Natural Science Foundation of Hubei Province of China (Grant No. 2004ABA120)
文摘The aiiA gene from Bacillus thuringiensis was cloned into the Pseudomonas/E. coli shuttle vector and transformed into Pseudomonas aeruginosa strain PAO1. Western blotting showed that the AiiA protein was expressed in PAO1. After induction by IPTG for 6 h and 18 h, expression of the aiiA gene in PAO1 completely degraded the quorum sensing autoinducers N-acylhomoserine lactones (AHLs): N-oxododecanoyl-L-homoserine lactone (OdDHL) and N-butyryl-L-homoserine lactone (BHL). The re- duced amount of AHLs in PAO1 was also correlated with decreased expression and production of several virulence factors such as elastase and pyocyanin. AiiA expression also influenced bacterial swarming motility. Most importantly, our studies indicated that aiiA played significant roles in P. aeruginosa biofilm formation and dispersion, as observed by the differences of the biofilm formation on liquid and solid surfaces, and biofilm structures under a scanning electron microscope.
基金supported by the National Natural Science Foundation of China (Nos. 81401512, 41606186)the Scientific Research Fund of Hunan Provincial Education Department (No. 14B157)+1 种基金China Postdoctoral Science Foundation (No. 2016M602419)the Hong Kong Scholars Program (No. XJ2015022)
文摘Bacterial quorum sensing(QS) molecules are involved in the coordination of certain behaviors such as biofilm formation, virulence and antibiotic resistance. QS molecules(autoinducers) and their corresponding receptors have been recognized as important therapeutic targets for drug-resistant infections and biofilm-associated infections(BAI). This study assessed the multiple biological effects of homogentisic acid y-lactone(HgAL), a furanone derivative. The anti-QS and anti-biofilm effects of HgAL against PAO1 strain were evaluated using CLSM, SEM, HPLC and other biochemical methods The results showed that HgAL could effectively inhibit the production of pyocyanin and extracellular matrix, as well as reduce the adherence ability and biofilm formation of Pseudomonas aeruginosa. Inhibition of virulence is attributed to the suppressive effect of HgAL on biosynthesis of 3-oxo-C12-HSLand C4-HSL(two kinds of QS signaling molecules in P. aeruginosa). Our results support HgAL as a potential agent for prevention of BAI in the healthcare settings.