Confined spaces such as polar regions, deep earth and deep ocean are crucial navigation scenarios where traditional navigation techniques have difficulty in obtaining external signals for positioning. The cosmic ray m...Confined spaces such as polar regions, deep earth and deep ocean are crucial navigation scenarios where traditional navigation techniques have difficulty in obtaining external signals for positioning. The cosmic ray muons, which carry the spatial and energetic information, are easy to penetrate these confined spaces. Therefore, the unique muon characteristic provides a new perspective to estimate detector position, which can be considered using in confined spaces navigation.In this paper, a well-developed theory of muon navigation is established by combining a muon pseudorange measurement method. Moreover, an Equivalent Velocity Calculation Model(EVCM)and a Muon Sequence Matching Technology(MSMT) are proposed. The first model corrects flight pseudorange error caused by the relativistic energy loss and the second technology compensates the random error in pseudorange measurement. Further, a series of simulations are performed to analyze the muon events number which can be received by detector in different scenarios with the variations of zenith angle, detector area, varied detector plates gap, and muon flight distance.Meanwhile, the simulation results demonstrate that the muon navigation update rate every 10 minutes can reach 5.989 in confined spaces at 100 m, and further pseudorange error analysis indicates that the meter-level positioning accuracy can be acquired. Finally, we construct a muon coincidence measurement scheme and verify that the laws of the muon positioning system for high-energy muons are consistent with the simulation results.展开更多
基金supported by the Young Scientists Fund, China (No. 62103021)。
文摘Confined spaces such as polar regions, deep earth and deep ocean are crucial navigation scenarios where traditional navigation techniques have difficulty in obtaining external signals for positioning. The cosmic ray muons, which carry the spatial and energetic information, are easy to penetrate these confined spaces. Therefore, the unique muon characteristic provides a new perspective to estimate detector position, which can be considered using in confined spaces navigation.In this paper, a well-developed theory of muon navigation is established by combining a muon pseudorange measurement method. Moreover, an Equivalent Velocity Calculation Model(EVCM)and a Muon Sequence Matching Technology(MSMT) are proposed. The first model corrects flight pseudorange error caused by the relativistic energy loss and the second technology compensates the random error in pseudorange measurement. Further, a series of simulations are performed to analyze the muon events number which can be received by detector in different scenarios with the variations of zenith angle, detector area, varied detector plates gap, and muon flight distance.Meanwhile, the simulation results demonstrate that the muon navigation update rate every 10 minutes can reach 5.989 in confined spaces at 100 m, and further pseudorange error analysis indicates that the meter-level positioning accuracy can be acquired. Finally, we construct a muon coincidence measurement scheme and verify that the laws of the muon positioning system for high-energy muons are consistent with the simulation results.