Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any mod...In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any modern company. A companys operational and historical data contains strategic and operational knowledge of ever-increasing added value. The emergence of a new paradigm: big data. Today, the value of the data scattered throughout this mother of knowledge is calculated in billions of dollars, depending on its size, scope and area of intervention. With the rise of computer networks and distributed systems, the threats to these sensitive resources have steadily increased, jeopardizing the existence of the company itself by drying up production and losing the interest of customers and suppliers. These threats range from sabotage to bankruptcy. For several decades now, most companies have been using encryption algorithms to protect and secure their information systems against the threats and dangers posed by the inherent vulnerabilities of their infrastructure and the current economic climate. This vulnerability requires companies to make the right choice of algorithms to implement in their management systems. For this reason, the present work aims to carry out a comparative study of the reliability and effectiveness of symmetrical and asymmetrical cryptosystems, in order to identify one or more suitable for securing academic data in the DRC. The analysis of the robustness of commonly used symmetric and asymmetric cryptosystems will be the subject of simulations in this article.展开更多
In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with...In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with a capsule-shaped equilibrium curve.The proposed chaotic system has two quadratic,two cubic and two quartic nonlinear terms.It is noted that the proposed chaotic system has a hidden attractor since it has an infinite number of equilibrium points.It is also established that the proposed chaotic system exhibits multi-stability with two coexisting chaotic attractors for the same parameter values but differential initial states.A detailed bifurcation analysis with respect to variations in the system parameters is portrayed for the new chaotic system with capsule equilibrium curve.We have shown MATLAB plots to illustrate the capsule equilibrium curve,phase orbits of the new chaotic system,bifurcation diagrams and multi-stability.As an engineering application,we have proposed a speech cryptosystem with a numerical algorithm,which is based on our novel 3-D chaotic system with a capsule-shaped equilibrium curve.The proposed speech cryptosystem follows its security evolution and implementation on Field Programmable Gate Array(FPGA)platform.Experimental results show that the proposed encryption system utilizes 33%of the FPGA,while the maximum clock frequency is 178.28 MHz.展开更多
Image encryption has attracted much interest as a robust security solution for preventing unauthorized access to critical image data.Medical picture encryption is a crucial step in many cloud-based and healthcare appl...Image encryption has attracted much interest as a robust security solution for preventing unauthorized access to critical image data.Medical picture encryption is a crucial step in many cloud-based and healthcare applications.In this study,a strong cryptosystem based on a 2D chaotic map and Jigsaw transformation is presented for the encryption of medical photos in private Internet of Medical Things(IoMT)and cloud storage.A disorganized three-dimensional map is the foundation of the proposed cipher.The dispersion of pixel values and the permutation of their places in this map are accomplished using a nonlinear encoding process.The suggested cryptosystem enhances the security of the delivered medical images by performing many operations.To validate the efficiency of the recommended cryptosystem,various medical image kinds are used,each with its unique characteristics.Several measures are used to evaluate the proposed cryptosystem,which all support its robust security.The simulation results confirm the supplied cryptosystem’s secrecy.Furthermore,it provides strong robustness and suggested protection standards for cloud service applications,healthcare,and IoMT.It is seen that the proposed 3D chaotic cryptosystem obtains an average entropy of 7.9998,which is near its most excellent value of 8,and a typical NPCR value of 99.62%,which is also near its extreme value of 99.60%.Moreover,the recommended cryptosystem outperforms conventional security systems across the test assessment criteria.展开更多
The main purpose of this paper is to introduce the LWE public key cryptosystem with its security. In the first section, we introduce the LWE public key cryptosystem by Regev with its applications and some previous res...The main purpose of this paper is to introduce the LWE public key cryptosystem with its security. In the first section, we introduce the LWE public key cryptosystem by Regev with its applications and some previous research results. Then we prove the security of LWE public key cryptosystem by Regev in detail. For not only independent identical Gaussian disturbances but also any general independent identical disturbances, we give a more accurate estimation probability of decryption error of general LWE cryptosystem. This guarantees high security and widespread applications of the LWE public key cryptosystem.展开更多
针对射频识别系统中标签与读卡器会话存在易被攻击者窃听等安全问题,提出一种基于R_LWE(Learning with Errors over Ring)密码体制加解密的RFID双向认证协议。协议采用R_LWE密码体制实现加密的同时引入交叉合成运算,既可确保安全性,亦...针对射频识别系统中标签与读卡器会话存在易被攻击者窃听等安全问题,提出一种基于R_LWE(Learning with Errors over Ring)密码体制加解密的RFID双向认证协议。协议采用R_LWE密码体制实现加密的同时引入交叉合成运算,既可确保安全性,亦可降低计算开销。结合不同攻击类型、逻辑形式化分析、性能角度综合分析,该协议具备安全等级高、计算量小等优势。展开更多
An enhaned NTRU cryptosystem eliminating decryption failures is proposed without using padding schemes and can resist the oracle model andchosen-ciphertext attacks. Because lattice reduction is the main threat to latt...An enhaned NTRU cryptosystem eliminating decryption failures is proposed without using padding schemes and can resist the oracle model andchosen-ciphertext attacks. Because lattice reduction is the main threat to lattice-based cryptosystems, lattice reductionalgorithms are analyzed to evaluate the security of this scheme. Furthermore, the new scheme remains the advantage of high efficiency of original NTRU.展开更多
In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (...In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hard- ware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosys- tem is secure and practical, and suitable for image encryption.展开更多
The short secret key characteristic of elliptic curve cryptosystem (ECC) are integrated with the ( t, n ) threshold method to create a practical threshold group signature scheme characterized by simultaneous signi...The short secret key characteristic of elliptic curve cryptosystem (ECC) are integrated with the ( t, n ) threshold method to create a practical threshold group signature scheme characterized by simultaneous signing. The scheme not only meets the requirements of anonymity and traceability of group signature but also can withstand Tseng and Wang's conspiracy attack. It allows the group manager to add new members and delete old members according to actual application, while the system parameters have a little change. Cryptanalysis result shows that the scheme is efficient and secure.展开更多
This paper proposed a distributed key management approach by using the recently developed concepts of certificate-based cryptosystem and threshold secret sharing schemes. Without any assumption of prefixed trust relat...This paper proposed a distributed key management approach by using the recently developed concepts of certificate-based cryptosystem and threshold secret sharing schemes. Without any assumption of prefixed trust relationship between nodes, the ad hoc network works in a self-organizing way to provide the key generation and key management services using threshold secret sharing schemes, which effectively solves the problem of single point of failure. The proposed approach combines the best aspects of identity-based key management approaches (implicit certification) and traditional public key infrastructure approaches (no key escrow).展开更多
The rapid transmission of multimedia information has been achieved mainly by recent advancements in the Internet’s speed and information technology.In spite of this,advancements in technology have resulted in breache...The rapid transmission of multimedia information has been achieved mainly by recent advancements in the Internet’s speed and information technology.In spite of this,advancements in technology have resulted in breaches of privacy and data security.When it comes to protecting private information in today’s Internet era,digital steganography is vital.Many academics are interested in digital video because it has a great capability for concealing important data.There have been a vast number of video steganography solutions developed lately to guard against the theft of confidential data.The visual imperceptibility,robustness,and embedding capacity of these approaches are all challenges that must be addressed.In this paper,a novel solution to reversible video steganography based on Discrete Wavelet Transform(DWT)and Quick Response(QR)codes is proposed to address these concerns.In order to increase the security level of the suggested method,an enhanced ElGamal cryptosystem has also been proposed.Prior to the embedding stage,the suggested method uses the modified ElGamal algorithm to encrypt secret QR codes.Concurrently,it applies two-dimensional DWT on the Y-component of each video frame resulting in Approximation(LL),Horizontal(LH),Vertical(HL),and Diagonal(HH)sub-bands.Then,the encrypted Low(L),Medium(M),Quantile(Q),and High(H)QR codes are embedded into the HL sub-band,HHsub-band,U-component,and V-component of video frames,respectively,using the Least Significant Bit(LSB)technique.As a consequence of extensive testing of the approach,it was shown to be very secure and highly invisible,as well as highly resistant to attacks from Salt&Pepper,Gaussian,Poisson,and Speckle noises,which has an average Structural Similarity Index(SSIM)of more than 0.91.Aside from visual imperceptibility,the suggested method exceeds current methods in terms of Peak Signal-to-Noise Ratio(PSNR)average of 52.143 dB,and embedding capacity 1 bpp.展开更多
The security of wireless local area network (WI.AN) becomes a bottleneck for its further applications. At present, many standard organizations and manufacturers of WLAN try to solve this problem. However, owing to t...The security of wireless local area network (WI.AN) becomes a bottleneck for its further applications. At present, many standard organizations and manufacturers of WLAN try to solve this problem. However, owing to the serious secure leak in IEEES02.11 standards, it is impossible to utterly solve the problem by simply adding some remedies. Based on the analysis on the security mechanism of WLAN and the latest techniques of WI.AN security, a solution to WLAN security was presented. The solution makes preparation for the further combination of WLAN and Internet.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
文摘In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any modern company. A companys operational and historical data contains strategic and operational knowledge of ever-increasing added value. The emergence of a new paradigm: big data. Today, the value of the data scattered throughout this mother of knowledge is calculated in billions of dollars, depending on its size, scope and area of intervention. With the rise of computer networks and distributed systems, the threats to these sensitive resources have steadily increased, jeopardizing the existence of the company itself by drying up production and losing the interest of customers and suppliers. These threats range from sabotage to bankruptcy. For several decades now, most companies have been using encryption algorithms to protect and secure their information systems against the threats and dangers posed by the inherent vulnerabilities of their infrastructure and the current economic climate. This vulnerability requires companies to make the right choice of algorithms to implement in their management systems. For this reason, the present work aims to carry out a comparative study of the reliability and effectiveness of symmetrical and asymmetrical cryptosystems, in order to identify one or more suitable for securing academic data in the DRC. The analysis of the robustness of commonly used symmetric and asymmetric cryptosystems will be the subject of simulations in this article.
基金funded by the Center for Research Excellence,Incubation Management Center,Universiti Sultan Zainal Abidin via an internal grant UniSZA/2021/SRGSIC/07.
文摘In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with a capsule-shaped equilibrium curve.The proposed chaotic system has two quadratic,two cubic and two quartic nonlinear terms.It is noted that the proposed chaotic system has a hidden attractor since it has an infinite number of equilibrium points.It is also established that the proposed chaotic system exhibits multi-stability with two coexisting chaotic attractors for the same parameter values but differential initial states.A detailed bifurcation analysis with respect to variations in the system parameters is portrayed for the new chaotic system with capsule equilibrium curve.We have shown MATLAB plots to illustrate the capsule equilibrium curve,phase orbits of the new chaotic system,bifurcation diagrams and multi-stability.As an engineering application,we have proposed a speech cryptosystem with a numerical algorithm,which is based on our novel 3-D chaotic system with a capsule-shaped equilibrium curve.The proposed speech cryptosystem follows its security evolution and implementation on Field Programmable Gate Array(FPGA)platform.Experimental results show that the proposed encryption system utilizes 33%of the FPGA,while the maximum clock frequency is 178.28 MHz.
基金The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code(NU/RC/SERC/11/5).
文摘Image encryption has attracted much interest as a robust security solution for preventing unauthorized access to critical image data.Medical picture encryption is a crucial step in many cloud-based and healthcare applications.In this study,a strong cryptosystem based on a 2D chaotic map and Jigsaw transformation is presented for the encryption of medical photos in private Internet of Medical Things(IoMT)and cloud storage.A disorganized three-dimensional map is the foundation of the proposed cipher.The dispersion of pixel values and the permutation of their places in this map are accomplished using a nonlinear encoding process.The suggested cryptosystem enhances the security of the delivered medical images by performing many operations.To validate the efficiency of the recommended cryptosystem,various medical image kinds are used,each with its unique characteristics.Several measures are used to evaluate the proposed cryptosystem,which all support its robust security.The simulation results confirm the supplied cryptosystem’s secrecy.Furthermore,it provides strong robustness and suggested protection standards for cloud service applications,healthcare,and IoMT.It is seen that the proposed 3D chaotic cryptosystem obtains an average entropy of 7.9998,which is near its most excellent value of 8,and a typical NPCR value of 99.62%,which is also near its extreme value of 99.60%.Moreover,the recommended cryptosystem outperforms conventional security systems across the test assessment criteria.
文摘The main purpose of this paper is to introduce the LWE public key cryptosystem with its security. In the first section, we introduce the LWE public key cryptosystem by Regev with its applications and some previous research results. Then we prove the security of LWE public key cryptosystem by Regev in detail. For not only independent identical Gaussian disturbances but also any general independent identical disturbances, we give a more accurate estimation probability of decryption error of general LWE cryptosystem. This guarantees high security and widespread applications of the LWE public key cryptosystem.
文摘针对射频识别系统中标签与读卡器会话存在易被攻击者窃听等安全问题,提出一种基于R_LWE(Learning with Errors over Ring)密码体制加解密的RFID双向认证协议。协议采用R_LWE密码体制实现加密的同时引入交叉合成运算,既可确保安全性,亦可降低计算开销。结合不同攻击类型、逻辑形式化分析、性能角度综合分析,该协议具备安全等级高、计算量小等优势。
文摘An enhaned NTRU cryptosystem eliminating decryption failures is proposed without using padding schemes and can resist the oracle model andchosen-ciphertext attacks. Because lattice reduction is the main threat to lattice-based cryptosystems, lattice reductionalgorithms are analyzed to evaluate the security of this scheme. Furthermore, the new scheme remains the advantage of high efficiency of original NTRU.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014)+2 种基金the Program for Excellent Talents in Universities of Liaoning Province, China (Grant No. LR2012003)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165)the Fundamental Research Funds for the Central Universities of China (Grant No. DUT12JB06)
文摘In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hard- ware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosys- tem is secure and practical, and suitable for image encryption.
基金The National Natural Science Foundation of China (No60403027)
文摘The short secret key characteristic of elliptic curve cryptosystem (ECC) are integrated with the ( t, n ) threshold method to create a practical threshold group signature scheme characterized by simultaneous signing. The scheme not only meets the requirements of anonymity and traceability of group signature but also can withstand Tseng and Wang's conspiracy attack. It allows the group manager to add new members and delete old members according to actual application, while the system parameters have a little change. Cryptanalysis result shows that the scheme is efficient and secure.
文摘This paper proposed a distributed key management approach by using the recently developed concepts of certificate-based cryptosystem and threshold secret sharing schemes. Without any assumption of prefixed trust relationship between nodes, the ad hoc network works in a self-organizing way to provide the key generation and key management services using threshold secret sharing schemes, which effectively solves the problem of single point of failure. The proposed approach combines the best aspects of identity-based key management approaches (implicit certification) and traditional public key infrastructure approaches (no key escrow).
文摘The rapid transmission of multimedia information has been achieved mainly by recent advancements in the Internet’s speed and information technology.In spite of this,advancements in technology have resulted in breaches of privacy and data security.When it comes to protecting private information in today’s Internet era,digital steganography is vital.Many academics are interested in digital video because it has a great capability for concealing important data.There have been a vast number of video steganography solutions developed lately to guard against the theft of confidential data.The visual imperceptibility,robustness,and embedding capacity of these approaches are all challenges that must be addressed.In this paper,a novel solution to reversible video steganography based on Discrete Wavelet Transform(DWT)and Quick Response(QR)codes is proposed to address these concerns.In order to increase the security level of the suggested method,an enhanced ElGamal cryptosystem has also been proposed.Prior to the embedding stage,the suggested method uses the modified ElGamal algorithm to encrypt secret QR codes.Concurrently,it applies two-dimensional DWT on the Y-component of each video frame resulting in Approximation(LL),Horizontal(LH),Vertical(HL),and Diagonal(HH)sub-bands.Then,the encrypted Low(L),Medium(M),Quantile(Q),and High(H)QR codes are embedded into the HL sub-band,HHsub-band,U-component,and V-component of video frames,respectively,using the Least Significant Bit(LSB)technique.As a consequence of extensive testing of the approach,it was shown to be very secure and highly invisible,as well as highly resistant to attacks from Salt&Pepper,Gaussian,Poisson,and Speckle noises,which has an average Structural Similarity Index(SSIM)of more than 0.91.Aside from visual imperceptibility,the suggested method exceeds current methods in terms of Peak Signal-to-Noise Ratio(PSNR)average of 52.143 dB,and embedding capacity 1 bpp.
基金The National Natural Science Foundation ofChina(No60703031)The Natural Science Foundation of Shaanxi Province ( No2007F50)
文摘The security of wireless local area network (WI.AN) becomes a bottleneck for its further applications. At present, many standard organizations and manufacturers of WLAN try to solve this problem. However, owing to the serious secure leak in IEEES02.11 standards, it is impossible to utterly solve the problem by simply adding some remedies. Based on the analysis on the security mechanism of WLAN and the latest techniques of WI.AN security, a solution to WLAN security was presented. The solution makes preparation for the further combination of WLAN and Internet.