This paper reports the role of national newspapers in the agenda setting process about the economical crisis in Mexico and its impact, as important mediators, in the public opinion, in a context of high social uncerta...This paper reports the role of national newspapers in the agenda setting process about the economical crisis in Mexico and its impact, as important mediators, in the public opinion, in a context of high social uncertainty. It has sought to know whether the responses of federal government economic policy have influenced the presidential level of acceptance and whether the adverse outcomes in federal elections intermediate reveal significant aspects in the electoral behavior of the population for presidential succession 2012. This involved measuring citizens perceptions and decisions before the reforms and their consequences, analyze government communication strategies to the crisis and assess the treatment and approaches news from three newspapers about the events concerning the public agenda. The analysis has focused on three states of the central-south of Mexico.展开更多
Automatically generating a brief summary for legal-related public opinion news(LPO-news,which contains legal words or phrases)plays an important role in rapid and effective public opinion disposal.For LPO-news,the cri...Automatically generating a brief summary for legal-related public opinion news(LPO-news,which contains legal words or phrases)plays an important role in rapid and effective public opinion disposal.For LPO-news,the critical case elements which are significant parts of the summary may be mentioned several times in the reader comments.Consequently,we investigate the task of comment-aware abstractive text summarization for LPO-news,which can generate salient summary by learning pivotal case elements from the reader comments.In this paper,we present a hierarchical comment-aware encoder(HCAE),which contains four components:1)a traditional sequenceto-sequence framework as our baseline;2)a selective denoising module to filter the noisy of comments and distinguish the case elements;3)a merge module by coupling the source article and comments to yield comment-aware context representation;4)a recoding module to capture the interaction among the source article words conditioned on the comments.Extensive experiments are conducted on a large dataset of legal public opinion news collected from micro-blog,and results show that the proposed model outperforms several existing state-of-the-art baseline models under the ROUGE metrics.展开更多
Entity perception of ambiguous user comments is a critical problem of target identification for huge amount of public opinions.In this paper,a Two-Step-Matching method is proposed to identify the precise target entity...Entity perception of ambiguous user comments is a critical problem of target identification for huge amount of public opinions.In this paper,a Two-Step-Matching method is proposed to identify the precise target entity from multiple entities mentioned.Firstly,potential entities are extracted by BiLSTM-CRF model and characteristic words by TF-IDF model from public comments.Secondly,the first matching is implemented between potential entities and an official business directory by Jaro-Winkler distance algorithm.Then,in order to find the pre-cise one,an industry-characteristic dictionary is developed into the second matching process.The precise entity is identified according to the count of characteristic words matching to industry-characteristic dictionary.In addition,associated rate(global indicator)and accuracy rate(sample indicator)are defined for evaluation of matching accuracy.The results for three data sets of public opinions about major public health events show that the highest associated rate and accuracy rate arrive at 0.93 and 0.95,averagely enhanced by 32%and 30%above the case of using the first matching process alone.This framework provides the method to find the true target entity of really wanted expression from public opinions.展开更多
文摘This paper reports the role of national newspapers in the agenda setting process about the economical crisis in Mexico and its impact, as important mediators, in the public opinion, in a context of high social uncertainty. It has sought to know whether the responses of federal government economic policy have influenced the presidential level of acceptance and whether the adverse outcomes in federal elections intermediate reveal significant aspects in the electoral behavior of the population for presidential succession 2012. This involved measuring citizens perceptions and decisions before the reforms and their consequences, analyze government communication strategies to the crisis and assess the treatment and approaches news from three newspapers about the events concerning the public agenda. The analysis has focused on three states of the central-south of Mexico.
基金supported by the National Key Research and Development Program of China (2018YFC0830105,2018YFC 0830101,2018YFC0830100)the National Natural Science Foundation of China (Grant Nos.61972186,61762056,61472168)+1 种基金the Yunnan Provincial Major Science and Technology Special Plan Projects (202002AD080001)the General Projects of Basic Research in Yunnan Province (202001AT070046,202001AT070047).
文摘Automatically generating a brief summary for legal-related public opinion news(LPO-news,which contains legal words or phrases)plays an important role in rapid and effective public opinion disposal.For LPO-news,the critical case elements which are significant parts of the summary may be mentioned several times in the reader comments.Consequently,we investigate the task of comment-aware abstractive text summarization for LPO-news,which can generate salient summary by learning pivotal case elements from the reader comments.In this paper,we present a hierarchical comment-aware encoder(HCAE),which contains four components:1)a traditional sequenceto-sequence framework as our baseline;2)a selective denoising module to filter the noisy of comments and distinguish the case elements;3)a merge module by coupling the source article and comments to yield comment-aware context representation;4)a recoding module to capture the interaction among the source article words conditioned on the comments.Extensive experiments are conducted on a large dataset of legal public opinion news collected from micro-blog,and results show that the proposed model outperforms several existing state-of-the-art baseline models under the ROUGE metrics.
基金This work is partially supported by the National Natural Science Foundation of China(Grant Nos.71901144,71771152,61773248)the Major Program of National Fund of Philosophy and Social Science of China(18ZDA088,20ZDA060)+2 种基金Shanghai Planning Office of Philosophy and Social Science Foundation(Grant No.2019EXW001)Foundation of University of Finance and Economics(Grant No.2017110709)S-Tech internet communication project(Grant Nos.2018PHD005 and 2018TECH003).
文摘Entity perception of ambiguous user comments is a critical problem of target identification for huge amount of public opinions.In this paper,a Two-Step-Matching method is proposed to identify the precise target entity from multiple entities mentioned.Firstly,potential entities are extracted by BiLSTM-CRF model and characteristic words by TF-IDF model from public comments.Secondly,the first matching is implemented between potential entities and an official business directory by Jaro-Winkler distance algorithm.Then,in order to find the pre-cise one,an industry-characteristic dictionary is developed into the second matching process.The precise entity is identified according to the count of characteristic words matching to industry-characteristic dictionary.In addition,associated rate(global indicator)and accuracy rate(sample indicator)are defined for evaluation of matching accuracy.The results for three data sets of public opinions about major public health events show that the highest associated rate and accuracy rate arrive at 0.93 and 0.95,averagely enhanced by 32%and 30%above the case of using the first matching process alone.This framework provides the method to find the true target entity of really wanted expression from public opinions.