The security of wireless local area network (WI.AN) becomes a bottleneck for its further applications. At present, many standard organizations and manufacturers of WLAN try to solve this problem. However, owing to t...The security of wireless local area network (WI.AN) becomes a bottleneck for its further applications. At present, many standard organizations and manufacturers of WLAN try to solve this problem. However, owing to the serious secure leak in IEEES02.11 standards, it is impossible to utterly solve the problem by simply adding some remedies. Based on the analysis on the security mechanism of WLAN and the latest techniques of WI.AN security, a solution to WLAN security was presented. The solution makes preparation for the further combination of WLAN and Internet.展开更多
A GF(p) elliptic curve cryptographic coprocessor is proposed and implemented on Field Programmable Gate Array (FPGA). The focus of the coprocessor is on the most critical, complicated and time-consuming point multipli...A GF(p) elliptic curve cryptographic coprocessor is proposed and implemented on Field Programmable Gate Array (FPGA). The focus of the coprocessor is on the most critical, complicated and time-consuming point multiplications. The technique of coordinates conversion and fast multiplication algorithm of two large integers are utilized to avoid frequent inversions and to accelerate the field multiplications used in point multiplications. The characteristic of hardware parallelism is considered in the implementation of point multiplications. The coprocessor implemented on XILINX XC2V3000 computes a point multiplication for an arbitrary point on a curve defined over GF(2192?264?1) with the frequency of 10 MHz in 4.40 ms in the average case and 5.74 ms in the worst case. At the same circumstance, the coprocessor implemented on XILINX XC2V4000 takes 2.2 ms in the average case and 2.88 ms in the worst case.展开更多
As the wireless sensor networks are easily deployable, the volume of sensor applications has been increased widely in various fields of military and commercial areas. In order to attain security on the data exchanged ...As the wireless sensor networks are easily deployable, the volume of sensor applications has been increased widely in various fields of military and commercial areas. In order to attain security on the data exchanged over the network, a hybrid cryptographic mechanism which includes both symmetric and asymmetric cryptographic functions is used. The public key cryptographic ECC security implementation in this paper performs a matrix mapping of data’s at the points on the elliptical curve, which are further encoded using the private symmetric cipher cryptographic algorithm. This security enhancement with the hybrid mechanism of ECC and symmetric cipher cryptographic scheme achieves efficiency in energy conservation of about 7% and 4% compared to the asymmetric and symmetric cipher security implementations in WSN.展开更多
In present digital era,an exponential increase in Internet of Things(IoT)devices poses several design issues for business concerning security and privacy.Earlier studies indicate that the blockchain technology is foun...In present digital era,an exponential increase in Internet of Things(IoT)devices poses several design issues for business concerning security and privacy.Earlier studies indicate that the blockchain technology is found to be a significant solution to resolve the challenges of data security exist in IoT.In this view,this paper presents a new privacy-preserving Secure Ant Colony optimization with Multi Kernel Support Vector Machine(ACOMKSVM)with Elliptical Curve cryptosystem(ECC)for secure and reliable IoT data sharing.This program uses blockchain to ensure protection and integrity of some data while it has the technology to create secure ACOMKSVM training algorithms in partial views of IoT data,collected from various data providers.Then,ECC is used to create effective and accurate privacy that protects ACOMKSVM secure learning process.In this study,the authors deployed blockchain technique to create a secure and reliable data exchange platform across multiple data providers,where IoT data is encrypted and recorded in a distributed ledger.The security analysis showed that the specific data ensures confidentiality of critical data from each data provider and protects the parameters of the ACOMKSVM model for data analysts.To examine the performance of the proposed method,it is tested against two benchmark dataset such as Breast Cancer Wisconsin Data Set(BCWD)and Heart Disease Data Set(HDD)from UCI AI repository.The simulation outcome indicated that the ACOMKSVM model has outperformed all the compared methods under several aspects.展开更多
基金The National Natural Science Foundation ofChina(No60703031)The Natural Science Foundation of Shaanxi Province ( No2007F50)
文摘The security of wireless local area network (WI.AN) becomes a bottleneck for its further applications. At present, many standard organizations and manufacturers of WLAN try to solve this problem. However, owing to the serious secure leak in IEEES02.11 standards, it is impossible to utterly solve the problem by simply adding some remedies. Based on the analysis on the security mechanism of WLAN and the latest techniques of WI.AN security, a solution to WLAN security was presented. The solution makes preparation for the further combination of WLAN and Internet.
基金Supported by the National Natural Science Foun dation of China ( 69973034 ) and the National High TechnologyResearch and Development Program of China (2002AA141050)
文摘A GF(p) elliptic curve cryptographic coprocessor is proposed and implemented on Field Programmable Gate Array (FPGA). The focus of the coprocessor is on the most critical, complicated and time-consuming point multiplications. The technique of coordinates conversion and fast multiplication algorithm of two large integers are utilized to avoid frequent inversions and to accelerate the field multiplications used in point multiplications. The characteristic of hardware parallelism is considered in the implementation of point multiplications. The coprocessor implemented on XILINX XC2V3000 computes a point multiplication for an arbitrary point on a curve defined over GF(2192?264?1) with the frequency of 10 MHz in 4.40 ms in the average case and 5.74 ms in the worst case. At the same circumstance, the coprocessor implemented on XILINX XC2V4000 takes 2.2 ms in the average case and 2.88 ms in the worst case.
文摘As the wireless sensor networks are easily deployable, the volume of sensor applications has been increased widely in various fields of military and commercial areas. In order to attain security on the data exchanged over the network, a hybrid cryptographic mechanism which includes both symmetric and asymmetric cryptographic functions is used. The public key cryptographic ECC security implementation in this paper performs a matrix mapping of data’s at the points on the elliptical curve, which are further encoded using the private symmetric cipher cryptographic algorithm. This security enhancement with the hybrid mechanism of ECC and symmetric cipher cryptographic scheme achieves efficiency in energy conservation of about 7% and 4% compared to the asymmetric and symmetric cipher security implementations in WSN.
文摘In present digital era,an exponential increase in Internet of Things(IoT)devices poses several design issues for business concerning security and privacy.Earlier studies indicate that the blockchain technology is found to be a significant solution to resolve the challenges of data security exist in IoT.In this view,this paper presents a new privacy-preserving Secure Ant Colony optimization with Multi Kernel Support Vector Machine(ACOMKSVM)with Elliptical Curve cryptosystem(ECC)for secure and reliable IoT data sharing.This program uses blockchain to ensure protection and integrity of some data while it has the technology to create secure ACOMKSVM training algorithms in partial views of IoT data,collected from various data providers.Then,ECC is used to create effective and accurate privacy that protects ACOMKSVM secure learning process.In this study,the authors deployed blockchain technique to create a secure and reliable data exchange platform across multiple data providers,where IoT data is encrypted and recorded in a distributed ledger.The security analysis showed that the specific data ensures confidentiality of critical data from each data provider and protects the parameters of the ACOMKSVM model for data analysts.To examine the performance of the proposed method,it is tested against two benchmark dataset such as Breast Cancer Wisconsin Data Set(BCWD)and Heart Disease Data Set(HDD)from UCI AI repository.The simulation outcome indicated that the ACOMKSVM model has outperformed all the compared methods under several aspects.