作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重...作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重影响接触网系统稳定运行.因此,及时精确定位接触网支撑部件(CSCs),对保障高铁安全运行和完善接触网检修维护策略具有重大意义.然而,CSCs的检测通常面临着零部件种类多、尺度差异大、部分零部件微小的问题.针对以上问题,本文提出一种基于多尺度融合金字塔焦点网络的接触网零部件检测算法,将平衡模块和特征金字塔模块相结合,提高对小目标的检测性能.首先,设计了可分离残差金字塔聚合模块(SRPAM),用于优化模型多尺度特征提取能力、扩大感受野,缓解CSCs检测的多尺度问题;其次,设计了一种基于平衡特征金字塔的路径聚合网络(PA-BFPN),用于提升跨层特征融合效率和小目标检测性能.最后,通过对比试验、可视化实验和消融实验证明了所提方法的有效性和优越性.其中,所提的MFPFCOS在CSCs数据集上的检测精度(mAP)能够在达到48.6%的同时,实现30的FLOPs(Floating point operations per second),表明所提方法能够在检测精度和检测速度之间保持良好的平衡.展开更多
车辆检测是智能交通系统和自动驾驶的重要组成部分。然而,实际交通场景中存在许多不确定因素,导致车辆检测模型的准确率低实时性差。为了解决这个问题,提出了一种快速准确的车辆检测算法——YOLOv8-DEL。使用DGCST(dynamic group convol...车辆检测是智能交通系统和自动驾驶的重要组成部分。然而,实际交通场景中存在许多不确定因素,导致车辆检测模型的准确率低实时性差。为了解决这个问题,提出了一种快速准确的车辆检测算法——YOLOv8-DEL。使用DGCST(dynamic group convolution shuffle transformer)模块代替C2f模块来重构主干网络,以增强特征提取能力并使网络更轻量;添加的P2检测层能使模型更敏锐地定位和检测小目标,同时采用Efficient RepGFPN进行多尺度特征融合,以丰富特征信息并提高模型的特征表达能力;通过结合GroupNorm和共享卷积的优点,设计了一种轻量型共享卷积检测头,在保持精度的前提下,有效减少参数量并提升检测速度。与YOLOv8相比,提出的YOLOv8-DEL在BDD100K数据集和KITTI数据集上,mAP@0.5分别提高了4.8个百分点和1.2个百分点,具有实时检测速度(208.6 FPS和216.4 FPS),在检测精度和速度方面实现了更有利的折中。展开更多
文摘作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重影响接触网系统稳定运行.因此,及时精确定位接触网支撑部件(CSCs),对保障高铁安全运行和完善接触网检修维护策略具有重大意义.然而,CSCs的检测通常面临着零部件种类多、尺度差异大、部分零部件微小的问题.针对以上问题,本文提出一种基于多尺度融合金字塔焦点网络的接触网零部件检测算法,将平衡模块和特征金字塔模块相结合,提高对小目标的检测性能.首先,设计了可分离残差金字塔聚合模块(SRPAM),用于优化模型多尺度特征提取能力、扩大感受野,缓解CSCs检测的多尺度问题;其次,设计了一种基于平衡特征金字塔的路径聚合网络(PA-BFPN),用于提升跨层特征融合效率和小目标检测性能.最后,通过对比试验、可视化实验和消融实验证明了所提方法的有效性和优越性.其中,所提的MFPFCOS在CSCs数据集上的检测精度(mAP)能够在达到48.6%的同时,实现30的FLOPs(Floating point operations per second),表明所提方法能够在检测精度和检测速度之间保持良好的平衡.