This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined d...This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined directly on an aluminum plate(180 mm×120 mm×3 mm) covered by a transparent plate.The working fluid employed is ethanol.As a result,various flow patterns and their transitions are observed and found to be related to the fluid fill ratio,input heat load and the device orientation.Also the operational characteristics and working mechanism are discussed.展开更多
This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum...This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum plate(180×120×3 nm^2), which was covered by a transparent plate. The working fluid employed was ethanol. As the results, the influence parameters of thermal performance were investigated, such as filling ratio, heat load and operational orientations etc. Filling ratio was found to be a critical parameter, and its effect was rather complicated. According to its values the PHP plate could have four distinct working zones with different operational characteristics and heat transfer performance. The effect of heat load on thermal performance was found to be positive, and in general, iucrcasing the heat load would improve heat transfer performance. In order to analyze the effect of gravity on thermal performance, three different heat modes and total seven tilt angles were tested and compared. Successful operation at all orientations with respect to gravity was also achieved.展开更多
Mathematical modeling of pulsating heat pipes through ‘first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far re...Mathematical modeling of pulsating heat pipes through ‘first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far render them unsuitable for engineering design. In this paper, a more realistic modeling scheme is presented which provides considerable try for thought toward the next progressive step. At high enough heat flux level, closed loop pulsating heat pipes experience a bulk internal unidirectional fluid circulation. Under such a condition, conventional two-phase flow modeling in capillary tubes may be applied. This has been attempted for single-loop PHPs. A homogeneous model and a separated two-fluid flow model based on simultaneous conservation of mass, momentum and energy, have been developed for an equivalent ‘open flow’ system. The model allows prediction of two-phase flow parameters in each sub-section of the device thereby providing important insights into its operation. The concept of ‘void fraction constraint’ in pulsating heat pipe operation is introduced and its relevance to future modeling attempts is outlined.展开更多
Flat plate pulsating heat pipe is useful for hot spot heat spreader. Two kinds of flat plate spreader of pulsating heat pipe are designed, fabricated and experimented. For the embedded circular capillary type, the tra...Flat plate pulsating heat pipe is useful for hot spot heat spreader. Two kinds of flat plate spreader of pulsating heat pipe are designed, fabricated and experimented. For the embedded circular capillary type, the transferred heat flux could reach 32 W/cm2, the smallest thermal resistance for acetone, methanol and FC-72 were respectively 0.50, 0.57 and 0.40℃/W. While for the square capillary type, the transferred heat flux could reach 26 W/cm2, the equivalent thermal conductivity could reach 3211 W/(m. ℃). There are ranges of optimal transferred power and filling ratio for different working liquid. If the transferred power is constant, changing the heating area and the place has little effects on the performance.展开更多
The refrigerant mixture of ethanol aqueous was applied to the parallel type pulsating heat pipe (PHP). The operation characteristics of the PHP were analyzed by means of experiment and nonlinear chaotic theory. Moreov...The refrigerant mixture of ethanol aqueous was applied to the parallel type pulsating heat pipe (PHP). The operation characteristics of the PHP were analyzed by means of experiment and nonlinear chaotic theory. Moreover, the relationship between the running state and attractor was described. The results indicate that starting power, stable running power and dry burning transition power are about 64.08 W, 148.68 W and 234.0 W respectively. The cycle and amplitude of PHP initially decrease and then increase with the increasing power. However, the data are welldistributed in a certain range. The running state is in agreement with the attractors, and the changing process for attractors is as follows: the attractors first disperse in the whole phase space, then present mass status, and finally show band distribution.展开更多
The effect of working fluid on the start-up and thermal performance in terms of thermal resistance and heat transfer coefficient of a pulsating heat pipe have been studied in the present paper. Methanol and de-ionized...The effect of working fluid on the start-up and thermal performance in terms of thermal resistance and heat transfer coefficient of a pulsating heat pipe have been studied in the present paper. Methanol and de-ionized water has been selected as the working fluid. The minimum startup power for DI water was obtained at 50% filling ratio and for methanol at 40%. The optimum filling ratio in terms of minimum startup power and minimum thermal resistance was 50% for DI water and 40% for methanol. The minimum thermal resistances for DI water and methanol were observed at vertical orientation. The evaporator side heat transfer coefficient for water was slightly more, while the condenser side heat transfer coefficient was appreciably more than that of methanol. Studies were also conducted for start-up time and temperature at different orientations and it was found that the PHP charged with methanol worked efficiently at all orientations.展开更多
The pulsating heat pipe is a very promising heat dissipation device to address the challenge of higher heat-flux electronic chips,as it is characterised by excellent heat transfer ability and flexibility for miniaturi...The pulsating heat pipe is a very promising heat dissipation device to address the challenge of higher heat-flux electronic chips,as it is characterised by excellent heat transfer ability and flexibility for miniaturisation.To boost the application of PHP,reliable heat transfer performance evaluationmodels are especially important.In this paper,a heat transfer correlation was firstly proposed for closed PHP with various working fluids(water,ethanol,methanol,R123,acetone)based on collected experimental data.Dimensional analysis was used to group the parameters.It was shown that the average absolute deviation(AAD)and correlation coefficient(r)of the correlation were 40.67%and 0.7556,respectively.For 95%of the data,the prediction of thermal resistance and the temperature difference between evaporation and condensation section fell within 1.13K/Wand 40.76K,respectively.Meanwhile,an artificial neural networkmodelwas also proposed.The ANN model showed a better prediction accuracy with a mean square error(MSE)and correlation coefficient(r)of 7.88e-7 and 0.9821,respectively.展开更多
The specific heat capacity of working fluid is an important influence factor on heat transfer characteristic of the pulsating heat pipe(PHP).Due to the relatively large specific heat capacity of micro encapsulated pha...The specific heat capacity of working fluid is an important influence factor on heat transfer characteristic of the pulsating heat pipe(PHP).Due to the relatively large specific heat capacity of micro encapsulated phase change material(MEPCM) suspension,a heat transfer performance experimental facility of the PHP was established.The heat transfer characteristic with MEPCM suspension of different mass concentrations(0.5% and 1.0%) and ultra-pure water were compared experimentally.It was found that when the PHP uses MEPCM suspension as its working fluid,operating stability is impoverished under lower heating power and the operating stability is better under higher heating power.At the inclination angle of 90°,the temperature at heating side decreases compared to ultra-pure water and the temperature at heating side decreases with the raising of MEPCM suspension mass concentration.The heat transfer characteristic of the PHP is positively correlated with the inclination angle and the 90° is optimum.The unfavorable effect of the inclination angle decreases with heating power increasing.When the inclination angle is 90°,the PHP with MEPCM suspension at 1.0% of mass concentration has the lowest thermal transfer resistance and followed by ultra-pure water and MEPCM suspension at 0.5% of mass concentration has the highest thermal transfer resistance.When the inclination angles are 60° and30°,the effect of gravity on the flow direction is reduced to 86.6% and 50% of that on the inclination angle of 90°,respectively,and the promoting effect of gravity on the working fluid is further weakened as the inclination angle further decreases.Due to the high viscosity of MEPCM suspension,the PHP with ultra-pure water has the lowest heat transfer resistance.When the inclination angles is 60°,the thermal resistance with MEPCM suspension at0.5% of the mass concentration is lower than that at 1.0% at the heating power below 230 W.The thermal resistance of MEPCM suspension tends to be similar for heating power of 230-250 W.At the heating power above 270 W,the thermal resistance with MEPCM suspension at 1.0% of the mass concentration is lower than that at 0.5%.展开更多
Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels wi...Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range.展开更多
Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover...Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover,high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard.Employing pulsating heat pipes(PHPs)is an innovative and useful approach to improving solar panel performance.This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe,while graphene oxide nanofluid with three different concentrations was used as a working fluid to maximize the efficacy of the solar panel.The study proved that the cooling method delivered high efficiency by reducing the temperature,especially in the middle of the day.Using nanofluid graphene oxide at concentrations of 0.2,0.4,and 0.8 gr/lit as the working fluid can reduce the thermal resistance of PHPs by over 30%,24%,and 15%,respectively.This,in turn,enhances the system’s electrical power output by approximately 9%,7%,and 6%,respectively.展开更多
The evaporating section of the pulsating heat pipe(PHP)is in direct contact with the electronics when it is used for heat dissipation,and thus the evaporating temperature uniformity has an important effect on the safe...The evaporating section of the pulsating heat pipe(PHP)is in direct contact with the electronics when it is used for heat dissipation,and thus the evaporating temperature uniformity has an important effect on the safe and reliable operation of electronic equipment.On the basis of these conditions,an experimental study on the evaporating temperature uniformity of the PHP with surfactant solutions at different concentrations was conducted at the heat fluxes of(1911–19427)W/m^(2).Sodium stearate was utilized for the solute;the surfactant solutions were prepared with the concentrations of 0.001 wt%,0.002 wt%,and 0.004 wt%,respectively,and the filling ratios of the PHP were 0.31,0.44 and 0.57,respectively.The experimental results revealed that under all tested working conditions,the highest temperature always appeared in the intermediate zone of the evaporating section.As the heat flux increased,the temperature differences among different zones rose initially and then reduced due to the change of the flow motion and the flow pattern.The evaporating temperature uniformity of the sodium stearate solutions-PHP was better than that of the deionized water-PHP,which suggested that the evaporating temperature uniformity might be improved through decreasing the surface tension.Furthermore,combined with the effect of surface tension and viscosity,for different filling ratios,the required concentration was different when the best evaporating temperature uniformity was achieved.To be specific,when the filling ratio were 0.31 and 0.44,the best evaporating temperature uniformity was achieved at the concentration of 0.004 wt%,while at the filling ratio of 0.57,the best evaporating temperature uniformity was attained at the concentration of 0.002 wt%.展开更多
Two sets of silicon-based micro pulsating heat pipes(SMPHPs) with trapezoidal cross section having hydraulic diameters of 352 μm(#1) and 394 μm(#2) respectively were fabricated for the first time using MEMS technolo...Two sets of silicon-based micro pulsating heat pipes(SMPHPs) with trapezoidal cross section having hydraulic diameters of 352 μm(#1) and 394 μm(#2) respectively were fabricated for the first time using MEMS technology.With FC-72 as the working fluid,the start-up,steady operation state,as well as flow patterns were investigated using a CCD camera.It was found that the start-up process of these two SMPHPs was rather rapid.At the start-up period,no nucleation was observed,and the vapor plugs at the evaporator U-bends were formed mainly due to the breakup of liquid slugs.At the steady operation state,self-sustained oscillation with large amplitudes dominated the flow behavior when the inclination angle varied from 10° to 90°,but the nucleate boiling and bulk circulation were observed only in SMPHP #2.While bubbly,slug/plug,annular/semi-annular,and wavy-annular flows were observed in both two SMPHPs,the injection flow only appeared in SMPHP #2.展开更多
A series of experiments were performed on three types of closed loop pulsating heat pipes (PHPs), intending to investigate various kinds of flow patterns, and to develop some improved configurations for the PHPs. Op...A series of experiments were performed on three types of closed loop pulsating heat pipes (PHPs), intending to investigate various kinds of flow patterns, and to develop some improved configurations for the PHPs. Optical visualization results indicated that there might exist three flow patterns, i.e. bubble-liquid slug flow, semi-annular flow and annular flow, corresponding to different working conditions. For a given geometry and an adequate fill ratio, the PHPs had the self-adjusting characteristic for the flow patterns (from slug flow to semi-annular and then to annular flow) to meet the demands of the increasing heat input. Two special configurations, one with alternately varying channel diameter, the other equipped with one section of thicker tube, were found to be advantageous in establishing and maintaining reliable circulation of the working fluid. The thermal performance of the PHPs was examined over a range of working conditions. Comparing with the normal PHP with uniform diameter, either of the improved PHPs exhibited higher thermal performance.展开更多
Pulsating heat pipe (PHP), or oscillating heat pipe (OHP), a novel type of highly efficient heat transfer component, has been widely applied in many fields, such as in space-borne two-phase thermal control systems...Pulsating heat pipe (PHP), or oscillating heat pipe (OHP), a novel type of highly efficient heat transfer component, has been widely applied in many fields, such as in space-borne two-phase thermal control systems, in the cooling of electronic devices and in energy-saving technology, etc. In the present paper, the characteristics and working principles of the PHPs are introduced and the current researches in the field are described from the viewpoint of experimental tests, theoretical analyses as well as practical applications. Besides, it is found that the state-of-the-art experimental investigations on the PHPs are mainly focused on the flow visualization and the applications of nanofluids and other functional fluids, aiming at enhancing the heat transfer performance of the PHPs. In addition, it is also pointed out that the present theoretical analyses of the PHP are restricted by further development of two-phase flow theories, and are concentrated in the non-linear analyses. Numerical simulations are expected to be another research focus, in particular of the combination of the nanofluids and functional fluids.展开更多
Pulsating heat pipes(PHPs) are two-phase heat transfer heat pipes with high heat transfer capability and simple structure. Heating power is an important factor that affects the start-up response characteristics of PHP...Pulsating heat pipes(PHPs) are two-phase heat transfer heat pipes with high heat transfer capability and simple structure. Heating power is an important factor that affects the start-up response characteristics of PHPs. The operational characteristics during the start-up and stable operating stages were studied through experiments, and the corresponding dynamic response model under a specified heating power was established based on experimental data and flow pattern in the tube. The starting time, starting temperature, and dynamic response characteristic parameters at a certain heating power were calculated by the dynamic response model. The response characteristics of working fluid during the stable operation of PHPs were deduced based on the dynamic response curve of PHPs during the non-operational and stable operation stages. The response characteristics of PHPs for the step effect(given heating power) were quantitatively described by amplification factor K and time constant τ, thereby presenting the basis for the study on heat and mass transfer mechanisms of PHPs from non-operational to steady operation stage. Results showed that the minimum thermal resistance and the minimum time constant of the PHP are approximately 0.28 °C/W and 75, respectively, obtained at a heating power of 160 W. Moreover, these results indicated that the dynamic response of PHPs demonstrates a favourable performance and rapidly reaches another stable working state when their heat transfer performance is stable. However, the dynamic response time constant of pure fluids decreases when the quantity of the liquid working fluid in the PHP decreases with the increase in heating power.展开更多
基金the Ger man National Science Foundation (GR-412/33-2)Shanghai Leading Academic Discipline Project (No.B604)
文摘This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined directly on an aluminum plate(180 mm×120 mm×3 mm) covered by a transparent plate.The working fluid employed is ethanol.As a result,various flow patterns and their transitions are observed and found to be related to the fluid fill ratio,input heat load and the device orientation.Also the operational characteristics and working mechanism are discussed.
基金Supported by the Ger man National Science Foundation (DFG)(No. GR412/33)
文摘This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum plate(180×120×3 nm^2), which was covered by a transparent plate. The working fluid employed was ethanol. As the results, the influence parameters of thermal performance were investigated, such as filling ratio, heat load and operational orientations etc. Filling ratio was found to be a critical parameter, and its effect was rather complicated. According to its values the PHP plate could have four distinct working zones with different operational characteristics and heat transfer performance. The effect of heat load on thermal performance was found to be positive, and in general, iucrcasing the heat load would improve heat transfer performance. In order to analyze the effect of gravity on thermal performance, three different heat modes and total seven tilt angles were tested and compared. Successful operation at all orientations with respect to gravity was also achieved.
基金German National Science Foundation (DFG)(No. GR-412/22)
文摘Mathematical modeling of pulsating heat pipes through ‘first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far render them unsuitable for engineering design. In this paper, a more realistic modeling scheme is presented which provides considerable try for thought toward the next progressive step. At high enough heat flux level, closed loop pulsating heat pipes experience a bulk internal unidirectional fluid circulation. Under such a condition, conventional two-phase flow modeling in capillary tubes may be applied. This has been attempted for single-loop PHPs. A homogeneous model and a separated two-fluid flow model based on simultaneous conservation of mass, momentum and energy, have been developed for an equivalent ‘open flow’ system. The model allows prediction of two-phase flow parameters in each sub-section of the device thereby providing important insights into its operation. The concept of ‘void fraction constraint’ in pulsating heat pipe operation is introduced and its relevance to future modeling attempts is outlined.
文摘Flat plate pulsating heat pipe is useful for hot spot heat spreader. Two kinds of flat plate spreader of pulsating heat pipe are designed, fabricated and experimented. For the embedded circular capillary type, the transferred heat flux could reach 32 W/cm2, the smallest thermal resistance for acetone, methanol and FC-72 were respectively 0.50, 0.57 and 0.40℃/W. While for the square capillary type, the transferred heat flux could reach 26 W/cm2, the equivalent thermal conductivity could reach 3211 W/(m. ℃). There are ranges of optimal transferred power and filling ratio for different working liquid. If the transferred power is constant, changing the heating area and the place has little effects on the performance.
基金Supported by Tianjin Science and Technology Development Strategy Research Program(No.06YFGZGX18300)
文摘The refrigerant mixture of ethanol aqueous was applied to the parallel type pulsating heat pipe (PHP). The operation characteristics of the PHP were analyzed by means of experiment and nonlinear chaotic theory. Moreover, the relationship between the running state and attractor was described. The results indicate that starting power, stable running power and dry burning transition power are about 64.08 W, 148.68 W and 234.0 W respectively. The cycle and amplitude of PHP initially decrease and then increase with the increasing power. However, the data are welldistributed in a certain range. The running state is in agreement with the attractors, and the changing process for attractors is as follows: the attractors first disperse in the whole phase space, then present mass status, and finally show band distribution.
文摘The effect of working fluid on the start-up and thermal performance in terms of thermal resistance and heat transfer coefficient of a pulsating heat pipe have been studied in the present paper. Methanol and de-ionized water has been selected as the working fluid. The minimum startup power for DI water was obtained at 50% filling ratio and for methanol at 40%. The optimum filling ratio in terms of minimum startup power and minimum thermal resistance was 50% for DI water and 40% for methanol. The minimum thermal resistances for DI water and methanol were observed at vertical orientation. The evaporator side heat transfer coefficient for water was slightly more, while the condenser side heat transfer coefficient was appreciably more than that of methanol. Studies were also conducted for start-up time and temperature at different orientations and it was found that the PHP charged with methanol worked efficiently at all orientations.
基金This work is funded by National Natural Science Foundation of China(No.51906216).
文摘The pulsating heat pipe is a very promising heat dissipation device to address the challenge of higher heat-flux electronic chips,as it is characterised by excellent heat transfer ability and flexibility for miniaturisation.To boost the application of PHP,reliable heat transfer performance evaluationmodels are especially important.In this paper,a heat transfer correlation was firstly proposed for closed PHP with various working fluids(water,ethanol,methanol,R123,acetone)based on collected experimental data.Dimensional analysis was used to group the parameters.It was shown that the average absolute deviation(AAD)and correlation coefficient(r)of the correlation were 40.67%and 0.7556,respectively.For 95%of the data,the prediction of thermal resistance and the temperature difference between evaporation and condensation section fell within 1.13K/Wand 40.76K,respectively.Meanwhile,an artificial neural networkmodelwas also proposed.The ANN model showed a better prediction accuracy with a mean square error(MSE)and correlation coefficient(r)of 7.88e-7 and 0.9821,respectively.
基金financially supported by National Natural Science Foundation of China (Grant No.52000008)supported by R&D Program of Beijing Municipal Education Commission(Grant No.KM202310016008)+1 种基金Beijing Natural Science Foundation (Grant No.3192042)the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (Grant No.X20058)。
文摘The specific heat capacity of working fluid is an important influence factor on heat transfer characteristic of the pulsating heat pipe(PHP).Due to the relatively large specific heat capacity of micro encapsulated phase change material(MEPCM) suspension,a heat transfer performance experimental facility of the PHP was established.The heat transfer characteristic with MEPCM suspension of different mass concentrations(0.5% and 1.0%) and ultra-pure water were compared experimentally.It was found that when the PHP uses MEPCM suspension as its working fluid,operating stability is impoverished under lower heating power and the operating stability is better under higher heating power.At the inclination angle of 90°,the temperature at heating side decreases compared to ultra-pure water and the temperature at heating side decreases with the raising of MEPCM suspension mass concentration.The heat transfer characteristic of the PHP is positively correlated with the inclination angle and the 90° is optimum.The unfavorable effect of the inclination angle decreases with heating power increasing.When the inclination angle is 90°,the PHP with MEPCM suspension at 1.0% of mass concentration has the lowest thermal transfer resistance and followed by ultra-pure water and MEPCM suspension at 0.5% of mass concentration has the highest thermal transfer resistance.When the inclination angles are 60° and30°,the effect of gravity on the flow direction is reduced to 86.6% and 50% of that on the inclination angle of 90°,respectively,and the promoting effect of gravity on the working fluid is further weakened as the inclination angle further decreases.Due to the high viscosity of MEPCM suspension,the PHP with ultra-pure water has the lowest heat transfer resistance.When the inclination angles is 60°,the thermal resistance with MEPCM suspension at0.5% of the mass concentration is lower than that at 1.0% at the heating power below 230 W.The thermal resistance of MEPCM suspension tends to be similar for heating power of 230-250 W.At the heating power above 270 W,the thermal resistance with MEPCM suspension at 1.0% of the mass concentration is lower than that at 0.5%.
基金supported by JSPS KAKENHI Grant Number 22K03947.
文摘Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range.
文摘Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover,high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard.Employing pulsating heat pipes(PHPs)is an innovative and useful approach to improving solar panel performance.This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe,while graphene oxide nanofluid with three different concentrations was used as a working fluid to maximize the efficacy of the solar panel.The study proved that the cooling method delivered high efficiency by reducing the temperature,especially in the middle of the day.Using nanofluid graphene oxide at concentrations of 0.2,0.4,and 0.8 gr/lit as the working fluid can reduce the thermal resistance of PHPs by over 30%,24%,and 15%,respectively.This,in turn,enhances the system’s electrical power output by approximately 9%,7%,and 6%,respectively.
基金supported by State Key Laboratory of Air-Conditioning Equipment and System Energy Conservation(No.ACSKL2019KT08)Natural Science Foundation of Zhejiang Province(No.LZ19E060001)。
文摘The evaporating section of the pulsating heat pipe(PHP)is in direct contact with the electronics when it is used for heat dissipation,and thus the evaporating temperature uniformity has an important effect on the safe and reliable operation of electronic equipment.On the basis of these conditions,an experimental study on the evaporating temperature uniformity of the PHP with surfactant solutions at different concentrations was conducted at the heat fluxes of(1911–19427)W/m^(2).Sodium stearate was utilized for the solute;the surfactant solutions were prepared with the concentrations of 0.001 wt%,0.002 wt%,and 0.004 wt%,respectively,and the filling ratios of the PHP were 0.31,0.44 and 0.57,respectively.The experimental results revealed that under all tested working conditions,the highest temperature always appeared in the intermediate zone of the evaporating section.As the heat flux increased,the temperature differences among different zones rose initially and then reduced due to the change of the flow motion and the flow pattern.The evaporating temperature uniformity of the sodium stearate solutions-PHP was better than that of the deionized water-PHP,which suggested that the evaporating temperature uniformity might be improved through decreasing the surface tension.Furthermore,combined with the effect of surface tension and viscosity,for different filling ratios,the required concentration was different when the best evaporating temperature uniformity was achieved.To be specific,when the filling ratio were 0.31 and 0.44,the best evaporating temperature uniformity was achieved at the concentration of 0.004 wt%,while at the filling ratio of 0.57,the best evaporating temperature uniformity was attained at the concentration of 0.002 wt%.
基金supported by the National Natural Science Foundation of China (Grant No 50925624)the Program for New Century Excellent Talents in University of China (Grant No NCET-06-0406)the Shanghai Municipal Education Commission (Grant Nos 08ZZ10 and 08GG05)
文摘Two sets of silicon-based micro pulsating heat pipes(SMPHPs) with trapezoidal cross section having hydraulic diameters of 352 μm(#1) and 394 μm(#2) respectively were fabricated for the first time using MEMS technology.With FC-72 as the working fluid,the start-up,steady operation state,as well as flow patterns were investigated using a CCD camera.It was found that the start-up process of these two SMPHPs was rather rapid.At the start-up period,no nucleation was observed,and the vapor plugs at the evaporator U-bends were formed mainly due to the breakup of liquid slugs.At the steady operation state,self-sustained oscillation with large amplitudes dominated the flow behavior when the inclination angle varied from 10° to 90°,but the nucleate boiling and bulk circulation were observed only in SMPHP #2.While bubbly,slug/plug,annular/semi-annular,and wavy-annular flows were observed in both two SMPHPs,the injection flow only appeared in SMPHP #2.
基金the National Natural Science Foundation of China under contract 60672151 , 60532020.
文摘A series of experiments were performed on three types of closed loop pulsating heat pipes (PHPs), intending to investigate various kinds of flow patterns, and to develop some improved configurations for the PHPs. Optical visualization results indicated that there might exist three flow patterns, i.e. bubble-liquid slug flow, semi-annular flow and annular flow, corresponding to different working conditions. For a given geometry and an adequate fill ratio, the PHPs had the self-adjusting characteristic for the flow patterns (from slug flow to semi-annular and then to annular flow) to meet the demands of the increasing heat input. Two special configurations, one with alternately varying channel diameter, the other equipped with one section of thicker tube, were found to be advantageous in establishing and maintaining reliable circulation of the working fluid. The thermal performance of the PHPs was examined over a range of working conditions. Comparing with the normal PHP with uniform diameter, either of the improved PHPs exhibited higher thermal performance.
基金supported by the National Natural Science Foundation of China (Grant No. 51006069).
文摘Pulsating heat pipe (PHP), or oscillating heat pipe (OHP), a novel type of highly efficient heat transfer component, has been widely applied in many fields, such as in space-borne two-phase thermal control systems, in the cooling of electronic devices and in energy-saving technology, etc. In the present paper, the characteristics and working principles of the PHPs are introduced and the current researches in the field are described from the viewpoint of experimental tests, theoretical analyses as well as practical applications. Besides, it is found that the state-of-the-art experimental investigations on the PHPs are mainly focused on the flow visualization and the applications of nanofluids and other functional fluids, aiming at enhancing the heat transfer performance of the PHPs. In addition, it is also pointed out that the present theoretical analyses of the PHP are restricted by further development of two-phase flow theories, and are concentrated in the non-linear analyses. Numerical simulations are expected to be another research focus, in particular of the combination of the nanofluids and functional fluids.
基金financially supported by the National Natural Science Foundation of China(Grant No.51506004)Beijing Municipal Natural Science Foundation(Grant No.3162009)+3 种基金Scientific ResearchProject of Beijing Educational Committee(Grant No.KM201410016001)Beijing Youth Top-notch Talent Support ProgramScience and Technology Project of Beijing(Grant No.Z171100000517007)Fundamental Research Fund of Beijing University of Civil Engineering and Architecture(X18101)
文摘Pulsating heat pipes(PHPs) are two-phase heat transfer heat pipes with high heat transfer capability and simple structure. Heating power is an important factor that affects the start-up response characteristics of PHPs. The operational characteristics during the start-up and stable operating stages were studied through experiments, and the corresponding dynamic response model under a specified heating power was established based on experimental data and flow pattern in the tube. The starting time, starting temperature, and dynamic response characteristic parameters at a certain heating power were calculated by the dynamic response model. The response characteristics of working fluid during the stable operation of PHPs were deduced based on the dynamic response curve of PHPs during the non-operational and stable operation stages. The response characteristics of PHPs for the step effect(given heating power) were quantitatively described by amplification factor K and time constant τ, thereby presenting the basis for the study on heat and mass transfer mechanisms of PHPs from non-operational to steady operation stage. Results showed that the minimum thermal resistance and the minimum time constant of the PHP are approximately 0.28 °C/W and 75, respectively, obtained at a heating power of 160 W. Moreover, these results indicated that the dynamic response of PHPs demonstrates a favourable performance and rapidly reaches another stable working state when their heat transfer performance is stable. However, the dynamic response time constant of pure fluids decreases when the quantity of the liquid working fluid in the PHP decreases with the increase in heating power.