We analyze the frequencies of three known roAp stars,TIC 96315731,TIC 72392575,and TIC 318007796,using the light curves from the Transiting Exoplanet Survey Satellite.For TIC 96315731,the rotational and pulsational fr...We analyze the frequencies of three known roAp stars,TIC 96315731,TIC 72392575,and TIC 318007796,using the light curves from the Transiting Exoplanet Survey Satellite.For TIC 96315731,the rotational and pulsational frequencies are 0.1498360 day^(-1)and 165.2609 day^(-1),respectively.In the case of TIC 72392575,the rotational frequency is 0.25551 day^(-1).We detect a quintuplet of pulsation frequencies with a center frequency of135.9233 day^(-1),along with two signals within the second pair of rotational sidelobes of the quintuplet separated by the rotation frequency.These two signals may correspond to the frequencies of a dipole mode.In TIC318007796,the rotational and pulsational frequencies are 0.2475021 day^(-1),192.73995 day^(-1),and196.33065 day^(-1),respectively.Based on the oblique pulsator model,we calculate the rotation inclination(i)and magnetic obliquity angle(b)for the stars,which provide the geometry of the pulsation modes.Combining the phases of the frequency quintuplets,the pulsation amplitude and phase modulation curves,and the results of spherical harmonic decomposition,we conclude that the pulsation modes of frequency quintuplets in TIC96315731,TIC 72392575,and TIC 318007796 correspond to distorted dipole mode,distorted quadrupole mode,and distorted dipole mode,respectively.展开更多
We present experimental observations of soliton pulsations in the net normal-dispersion fiber laser by using the dispersive Fourier transform(DFT) technique. According to the pulsating characteristics, the soliton pul...We present experimental observations of soliton pulsations in the net normal-dispersion fiber laser by using the dispersive Fourier transform(DFT) technique. According to the pulsating characteristics, the soliton pulsations are classified as visible and invisible soliton pulsations. The visible soliton pulsation is converted from single-into dual-soliton pulsation with the common characteristics of energy oscillation and bandwidth breathing. The invisible soliton pulsation undergoes periodic variation in the spectral profile and peak power but remains invariable in pulse energy. The reason for invisible soliton pulsation behavior is periodic oscillation of the pulse inside the soliton molecule. These results could be helpful in deepening our understanding of the soliton pulsation phenomena.展开更多
In this work,the pulsation analysis is performed on 83 high-amplitudeδScuti stars(HADS),which have been observed by the Transiting Exoplanet Survey Satellite.The results show that 49 of these HADS show single-mode pu...In this work,the pulsation analysis is performed on 83 high-amplitudeδScuti stars(HADS),which have been observed by the Transiting Exoplanet Survey Satellite.The results show that 49 of these HADS show single-mode pulsation,27 of them show radial double-modes pulsation(in which 22 of them pulsate with the fundamental and first overtone modes and five of them pulsate with the first and second overtone modes),and seven of them show radial triple-modes pulsation(three of which are newly confirmed triple-mode HADS).The histogram of the fundamental periods and the ratios between the fundamental and first overtone periods show bimodal structures,which might be caused by the stellar evolution in this specific phase.Most of the radial triple-mode HADS have a fundamental amplitude of 41-54 mmag,and 50%of them have similar amplitudes of the fundamental and first overtone pulsation modes.All these hints require further confirmation not only in observations with more HADS samples,but also in theoretical models with suitable treatments of stellar evolution and pulsation.展开更多
基金Funding for the TESS mission is provided by the NASA Explorer Programsupport of the National Natural Science Foundation of China(NSFC,grant Nos.U2031204,12373038,12163005,and 12288102)+1 种基金the science research grants from the China Manned Space Project with No.CMSCSST-2021-A10the Natural Science Foundation of Xinjiang Nos.2022D01D85 and 2022TSYCLJ0006。
文摘We analyze the frequencies of three known roAp stars,TIC 96315731,TIC 72392575,and TIC 318007796,using the light curves from the Transiting Exoplanet Survey Satellite.For TIC 96315731,the rotational and pulsational frequencies are 0.1498360 day^(-1)and 165.2609 day^(-1),respectively.In the case of TIC 72392575,the rotational frequency is 0.25551 day^(-1).We detect a quintuplet of pulsation frequencies with a center frequency of135.9233 day^(-1),along with two signals within the second pair of rotational sidelobes of the quintuplet separated by the rotation frequency.These two signals may correspond to the frequencies of a dipole mode.In TIC318007796,the rotational and pulsational frequencies are 0.2475021 day^(-1),192.73995 day^(-1),and196.33065 day^(-1),respectively.Based on the oblique pulsator model,we calculate the rotation inclination(i)and magnetic obliquity angle(b)for the stars,which provide the geometry of the pulsation modes.Combining the phases of the frequency quintuplets,the pulsation amplitude and phase modulation curves,and the results of spherical harmonic decomposition,we conclude that the pulsation modes of frequency quintuplets in TIC96315731,TIC 72392575,and TIC 318007796 correspond to distorted dipole mode,distorted quadrupole mode,and distorted dipole mode,respectively.
基金supported by the National Natural Science Foundation of China (Grant No. 41875040)the Natural Science Foundation of Anhui Province, China (Grant No. 2008085MF211)+1 种基金the Foundation for Young Talents in College of Anhui Province, China (Grant No. gxyqZD2019034)the Innovation Fund for Postgraduates of Huaibei Normal University, China (Grant No. CX2022035)。
文摘We present experimental observations of soliton pulsations in the net normal-dispersion fiber laser by using the dispersive Fourier transform(DFT) technique. According to the pulsating characteristics, the soliton pulsations are classified as visible and invisible soliton pulsations. The visible soliton pulsation is converted from single-into dual-soliton pulsation with the common characteristics of energy oscillation and bandwidth breathing. The invisible soliton pulsation undergoes periodic variation in the spectral profile and peak power but remains invariable in pulse energy. The reason for invisible soliton pulsation behavior is periodic oscillation of the pulse inside the soliton molecule. These results could be helpful in deepening our understanding of the soliton pulsation phenomena.
基金support from the National Natural Science Foundation of China(NSFC)(Nos.12005124 and 12147215)support from the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP)(No.2020L0528)the Applied Basic Research Programs of Natural Science Foundation of Shanxi Province(No.202103021223320)。
文摘In this work,the pulsation analysis is performed on 83 high-amplitudeδScuti stars(HADS),which have been observed by the Transiting Exoplanet Survey Satellite.The results show that 49 of these HADS show single-mode pulsation,27 of them show radial double-modes pulsation(in which 22 of them pulsate with the fundamental and first overtone modes and five of them pulsate with the first and second overtone modes),and seven of them show radial triple-modes pulsation(three of which are newly confirmed triple-mode HADS).The histogram of the fundamental periods and the ratios between the fundamental and first overtone periods show bimodal structures,which might be caused by the stellar evolution in this specific phase.Most of the radial triple-mode HADS have a fundamental amplitude of 41-54 mmag,and 50%of them have similar amplitudes of the fundamental and first overtone pulsation modes.All these hints require further confirmation not only in observations with more HADS samples,but also in theoretical models with suitable treatments of stellar evolution and pulsation.