Welding research of A6N01S-T5 aluminum alloy profile for high-speed train was done by using laser-MIG hybrid welding and MIG welding individually. And the weld appearance,welding distortion,mechanical properties of th...Welding research of A6N01S-T5 aluminum alloy profile for high-speed train was done by using laser-MIG hybrid welding and MIG welding individually. And the weld appearance,welding distortion,mechanical properties of the joints and microstructures were analyzed. The test results demonstrated that high-efficient welding for the profile can be achieved by using laser-MIG hybrid welding,the speed of which can be over 3. 0 m/min. The processing had a good gap bridging ability,even if the gap of the butt joint was up to 2. 0 mm,a good weld appearance can also be got. While the hybrid welding speed was greater than 2. 5 m/min,the welding distortion of the laser-tandem MIG hybrid joints was just about 33% of that of the MIG joints,but the welding efficiency was over 3 times of MIG welding. And tensile strength of the hybrid joints was 85% of that of A6N01S-T5 base metal,9% higher than that of the MIG joints. Fatigue properties was tested individually with pulsed tensile fatigue method in the condition of 1 × 10~7 lifetime. The test results demonstrated that the fatigue strength of the joints was a little lower than that of base material,which could be up to 115 MPa. But the fatigue strength of hybrid welding joints was 107. 5 MPa,which was 23% higher than 87 MPa of MIG welding joints.展开更多
Bring forward a new analytical method in order to evaluate the stability of the process of aluminum alloy pulsed MIG welding. The ratio of the first and the second peak in arc voltage signal probability density was se...Bring forward a new analytical method in order to evaluate the stability of the process of aluminum alloy pulsed MIG welding. The ratio of the first and the second peak in arc voltage signal probability density was selected to evaluate aluminum alloy pulse MIG welding stability. By calculating the arc voltage signal probability density from 80 sets of welding experiments, the ratio of the two peaks in arc voltage probability in every set was captured. And the evaluation system of aluminum alloy pulse MIG welding stability was established. The smaller the ratio of peaks in arc voltage signal probability density is, the better the stability of the welding will be;the bigger the ratio of peaks in arc voltage signal probability density is, the poorer the stability of the welding will be.展开更多
Pulsed MIG welding is suitable for aluminum alloys welding, because spray transfer and excellent profile can be arrived during whole welding current range, and the energy of droplet can be controlled to overcome losin...Pulsed MIG welding is suitable for aluminum alloys welding, because spray transfer and excellent profile can be arrived during whole welding current range, and the energy of droplet can be controlled to overcome losing of alloy elements with lower melting and steam point by controlling pulse current and pulse time. Because of the special physic properties of aluminum alloys, there are different requirements for pulsed MIG welding between starting arc short circuit and drop transfer short circuit, pulse period and base period. In order to satisfy the need of aluminum alloys MIG welding, self adjusting dynamic characteristics are designed to output different dynamic characteristics in different welding startes. The self adjusting dynamic characteristics of pulsed MIG welding are achieved through a short circuit controller and a dynamic electronic inductor. The welding machine(AL MIG 350) with self adjusting dynamic characteristics has a high rate of successfully starting arc up to 96%, and the short circuit time during transfer is less than 1 ms, in the mean time, the arc is stiffness, spatter is low and weld appearance is good.展开更多
The high-speed camera system and data acquisition system of welding parameters were created in tandem MIG welding of high strength aluminum alloy. The experiments were carried out in order to obtain the photos of drop...The high-speed camera system and data acquisition system of welding parameters were created in tandem MIG welding of high strength aluminum alloy. The experiments were carried out in order to obtain the photos of droplet transfer under different welding parameters in pulsed mode. The droplet transfer mode of “one pulse one droplet” becomes the preferred selection during welding process because of its stable procedure and sound weld form. The parameter ranges for corresponding transfer mode were experimentally achieved, among which the stable droplet transfer mode of “one pulse one droplet” can be realized. These efforts brave the way for control weld heat input and weld formation in the future.展开更多
Based on double pulse welding process characteristics, expert database structure and work flow are designed. Further, multiple outstanding specifications of 1.0 ram-diameter wire are obtained through a large number of...Based on double pulse welding process characteristics, expert database structure and work flow are designed. Further, multiple outstanding specifications of 1.0 ram-diameter wire are obtained through a large number of experiments. By making non-linear regression analysis on these groups of standards, the relationship between average welding current and other pulse parameters can be found out. Polynomial regression equation is set up for further realization of" parameter estimation function of the expert database. Finally, the preliminary developed expert database is tested. The result indicates that the unified adjusting and parameters estimation of the expert database leads to stable welding process and good weld appearance.展开更多
Plasma-MIG {metal inert gas arc welding) hybrid welding of aluminum alloy with 6 mm thickness using ER5356 welding wire was carried out. The microstructures and mechanical properties of the welded joint were inve...Plasma-MIG {metal inert gas arc welding) hybrid welding of aluminum alloy with 6 mm thickness using ER5356 welding wire was carried out. The microstructures and mechanical properties of the welded joint were investigated by optical microscopy, X-ray diffraction (XRD) , energy dispersive spectroscopy (EDS) , tensile test, hardness test and scanning electron microscope ( SEM) were used to judge the type of tensile fracture. The results showed that the tensile strength of welded joint was 142 MPa which was 53. 6% o f the strength o f the base metal. The welding seam zone was characterized by dendritic structure. In the fusion zone, the columnar grains existed at one side of the welding seam. The fibrous organization was found in the base metal, and also in the heat affected zone (HAZ) where the recrystallization occurred. The HAZ was the weakest position of the welded joint due to the coarsening of Mg2Si phase. The type of tensile fracture was ductile fracture.展开更多
The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a...The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a high number of solutes,such as copper(Cu),magnesium(Mg),and manganese(Mn),causing solidification cracking.If high speed welding of 2024 aluminum alloy without the use of filler is achieved,the applicability of 2024 aluminum alloys will expand.Grain refining is one of the methods used to prevent solidification cracking in weld metal,although it has never been achieved for high-speed laser welding of 2024 aluminum alloy without filler.Here,we propose a short-pulsed,laser-induced,grain-refining method during continuous wave laser welding without filler.Bead-on-plate welding was performed on a 2024-T3 aluminum alloy at a welding speed of 1 m min−1 with a single mode fiber laser at a wavelength of 1070 nm and power of 1 kW.Areas in and around the molten pool were irradiated with nanosecond laser pulses at a wavelength of 1064 nm,pulse width of 10 ns,and pulse energy of 430 mJ.The grain-refinement effect was confirmed when laser pulses were irradiated on the molten pool.The grain-refinement region was formed in a semicircular shape along the solid–liquid interface.Results of the vertical section indicate that the grain-refinement region reached a depth of 1 mm along the solid–liquid interface.The Vickers hardness test results demonstrated that the hardness increased as a result of grain refinement and that the progress of solidification cracking was suppressed in the grain refinement region.展开更多
An analysis with Fourier series on electric signals of meso-spray process of pulse MIG welding of aluminum shows many harmonic waves of different frequency in the signals, including the inherent high, low frequency el...An analysis with Fourier series on electric signals of meso-spray process of pulse MIG welding of aluminum shows many harmonic waves of different frequency in the signals, including the inherent high, low frequency elementary waves of short circuit and the harmonic waves from pulse current besides the noise signals of high frequency. The wavelet filtering with adjustable threshold is applied to study and handle the electric signals from meso-spray process of pulse MIG welding of aluminum, displaying a good solution on suppressing the noise in the signals.展开更多
Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current.Microstructure and mechanical characteristics of the joints before and after repa...Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current.Microstructure and mechanical characteristics of the joints before and after repairing were investigated by examining macrostructure,microstructure,and distributions of porosity in the weld metal(WM),and by hardness,tensile,and bending tests.We observed that the welding current,phase transformations in heat-affected zone(HAZ)and porosity introduced in the WM during welding influence on its mechanical properties in sequence.The experimental results showed that the bead width and penetration as well as size of pores in the joints were mainly influenced by the welding currents.The sound joints were obtained at a welding current of 140 A with or without pulsed current when welding speed and gas flow rate were set at 20 cm·min-1 and 15 L·min-1,respectively.Among them,the decrease in mechanical properties of repair weld(RW)was directly related to the phase transformations in the over-ageing zone due to the double welding thermal cycles and elevated distribution of porosity in the WM.In addition,it was observed that the comparatively smaller grain size and lower porosity in WM of the RW produced by pulsed TIG welding gave a positive effect on its mechanical properties.展开更多
A novel ultrafast-convert hybrid pulse variable polarity gas tungsten arc welding process (HPVP-GTAW) is developed. High frequency pulse square-wave current which has a frequency of more than 20 kHz is exactly integ...A novel ultrafast-convert hybrid pulse variable polarity gas tungsten arc welding process (HPVP-GTAW) is developed. High frequency pulse square-wave current which has a frequency of more than 20 kHz is exactly integrated in the positive polarity current duration. The effects of pulse current parameters on arc characteristics and weld penetration have been studied during the HPVP-GTAW process using Al-5. 8 Mg alloy plates. The arc characteristics studied by arc voltage and its profile, weld penetration noted by the ratio of weld depth to width have been found to be influenced significantly by the pulse current. The experimental results show that the HPVP-GTA W process can improve the arc profile predominantly and obtain the higher weld penetration with lower heat input. The observation may help in understanding the weld characteristics with respect to variation in the pulse current parameters which may be beneficial in using the novel HPVP-GTAW process to produce the better weld quality of aluminum alloy plates.展开更多
Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base ...Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones.展开更多
Laser-MIG hybrid welding process was dealt with 6 mm thick 5083Hl16 Al-Mg alloy plate in butt-joint configuration. Weld formation principle during hybrid welding was explained. The joint properties and microstructure ...Laser-MIG hybrid welding process was dealt with 6 mm thick 5083Hl16 Al-Mg alloy plate in butt-joint configuration. Weld formation principle during hybrid welding was explained. The joint properties and microstructure characteristics of welded joints were analyzed by tensile tests, fractographs observed by optical microscopy and scanning electron microscopy (SEM). Higher heat input could obtain better mechanical properties, and tensile strength and elongation reached 97.2%, 81% of the base metal, respectively. Fracture position traasited from fusion line to weld center in the higher heat input, and fracture location were only in the center of welded joints for the heat input relatively small.展开更多
6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and tim...6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and time was investigated by transmission electron microscopy and scanning electron microscopy. The mechanical properties were examined by hardness test and tensile test. The results showed that the micro-hardness was sensitive to heat treatment temperature and time. Increasing temperature was beneficial to the shortening of peak aging time. There were a large number of dislocations and few precipitates in the welded joints. With the increase of post-weld heat treatment temperature and time, the density of dislocation decreased. Meanwhile, the strengthening phase precipitated and grew up gradually. When the post-weld heat treatment temperature increased up to 200℃, large Q' phases were observed. And they were responsible for the peak value of the micro-hardness in the welded joints.展开更多
A novel ultrafast-convert hybrid pulse square-wave variable polarity arc welding power source was developed. The variable polarity current which crossed zero with no dead time possessed the ultrafast converting speed ...A novel ultrafast-convert hybrid pulse square-wave variable polarity arc welding power source was developed. The variable polarity current which crossed zero with no dead time possessed the ultrafast converting speed and the series of ultrasonic pulse current were superimposed in the positive polarity current duration. A high-efficiency hybrid pulse variable polarity gas tungsten arc welding (HPVP-GTAW)process for aluminum alloys was achieved. With X-ray inspection, microstructure analysis, tensile tests and scanning electron microscopy (SEM) for fracture surface, the square butt welding cbaracteristics of 5A06, 2A14 and 2219 aluminum alloys were tested, respectively. Experimental results show that microstructure and mechanical properties of these aluminum alloy welded joints are influenced significantly by the introduction of ultrasonic pulse current. The weld quality is improved predominantly by the novel HPVP-GTA W process.展开更多
The synchronous acquisition system of droplet image inspection and arc electric signals were established and the droplet transition characteristics of aluminum alloys were researched in the plasma-MIG welding process....The synchronous acquisition system of droplet image inspection and arc electric signals were established and the droplet transition characteristics of aluminum alloys were researched in the plasma-MIG welding process.Typical droplet transition modes include globular transfer mode,short circuiting transfer mode,metastable spray transfer mode and projected transfer mode.The result indicates that MIG droplet transfer frequency and droplet transfer modes are changed by introducing the plasma arc in the plasma-MIG welding process compared with the MIG welding on the aluminum alloys,which broadens the range of welding parameters when the stable welding process proceeds.The metastable spray transfer and projected transfer mode are proved to be the most optimal modes by comparing the stability of electronic signal,droplet transition,weld appearance and weld penetration.展开更多
基金supported by National Natural Science Foundation of China(61640423)Additive Manufacturing&Laser Manufacturing of China(2016YFB1102100)High-end CNC Machine Tools&Basic Manufacturing Equipment of China(2016ZX04003002)
文摘Welding research of A6N01S-T5 aluminum alloy profile for high-speed train was done by using laser-MIG hybrid welding and MIG welding individually. And the weld appearance,welding distortion,mechanical properties of the joints and microstructures were analyzed. The test results demonstrated that high-efficient welding for the profile can be achieved by using laser-MIG hybrid welding,the speed of which can be over 3. 0 m/min. The processing had a good gap bridging ability,even if the gap of the butt joint was up to 2. 0 mm,a good weld appearance can also be got. While the hybrid welding speed was greater than 2. 5 m/min,the welding distortion of the laser-tandem MIG hybrid joints was just about 33% of that of the MIG joints,but the welding efficiency was over 3 times of MIG welding. And tensile strength of the hybrid joints was 85% of that of A6N01S-T5 base metal,9% higher than that of the MIG joints. Fatigue properties was tested individually with pulsed tensile fatigue method in the condition of 1 × 10~7 lifetime. The test results demonstrated that the fatigue strength of the joints was a little lower than that of base material,which could be up to 115 MPa. But the fatigue strength of hybrid welding joints was 107. 5 MPa,which was 23% higher than 87 MPa of MIG welding joints.
文摘Bring forward a new analytical method in order to evaluate the stability of the process of aluminum alloy pulsed MIG welding. The ratio of the first and the second peak in arc voltage signal probability density was selected to evaluate aluminum alloy pulse MIG welding stability. By calculating the arc voltage signal probability density from 80 sets of welding experiments, the ratio of the two peaks in arc voltage probability in every set was captured. And the evaluation system of aluminum alloy pulse MIG welding stability was established. The smaller the ratio of peaks in arc voltage signal probability density is, the better the stability of the welding will be;the bigger the ratio of peaks in arc voltage signal probability density is, the poorer the stability of the welding will be.
文摘Pulsed MIG welding is suitable for aluminum alloys welding, because spray transfer and excellent profile can be arrived during whole welding current range, and the energy of droplet can be controlled to overcome losing of alloy elements with lower melting and steam point by controlling pulse current and pulse time. Because of the special physic properties of aluminum alloys, there are different requirements for pulsed MIG welding between starting arc short circuit and drop transfer short circuit, pulse period and base period. In order to satisfy the need of aluminum alloys MIG welding, self adjusting dynamic characteristics are designed to output different dynamic characteristics in different welding startes. The self adjusting dynamic characteristics of pulsed MIG welding are achieved through a short circuit controller and a dynamic electronic inductor. The welding machine(AL MIG 350) with self adjusting dynamic characteristics has a high rate of successfully starting arc up to 96%, and the short circuit time during transfer is less than 1 ms, in the mean time, the arc is stiffness, spatter is low and weld appearance is good.
文摘The high-speed camera system and data acquisition system of welding parameters were created in tandem MIG welding of high strength aluminum alloy. The experiments were carried out in order to obtain the photos of droplet transfer under different welding parameters in pulsed mode. The droplet transfer mode of “one pulse one droplet” becomes the preferred selection during welding process because of its stable procedure and sound weld form. The parameter ranges for corresponding transfer mode were experimentally achieved, among which the stable droplet transfer mode of “one pulse one droplet” can be realized. These efforts brave the way for control weld heat input and weld formation in the future.
基金This work was supported by National Natural Science Foundation of China (No. 50875088) and Foundation h)r Distinguished Young Talents in Higher Education of Guaugdong ( No. LYM09099).
文摘Based on double pulse welding process characteristics, expert database structure and work flow are designed. Further, multiple outstanding specifications of 1.0 ram-diameter wire are obtained through a large number of experiments. By making non-linear regression analysis on these groups of standards, the relationship between average welding current and other pulse parameters can be found out. Polynomial regression equation is set up for further realization of" parameter estimation function of the expert database. Finally, the preliminary developed expert database is tested. The result indicates that the unified adjusting and parameters estimation of the expert database leads to stable welding process and good weld appearance.
基金Key Laboratory of Advanced Welding Technology of Jiangsu University of Science and Technology (Grant NO. JSAWT-11-02) for its financial support
文摘Plasma-MIG {metal inert gas arc welding) hybrid welding of aluminum alloy with 6 mm thickness using ER5356 welding wire was carried out. The microstructures and mechanical properties of the welded joint were investigated by optical microscopy, X-ray diffraction (XRD) , energy dispersive spectroscopy (EDS) , tensile test, hardness test and scanning electron microscope ( SEM) were used to judge the type of tensile fracture. The results showed that the tensile strength of welded joint was 142 MPa which was 53. 6% o f the strength o f the base metal. The welding seam zone was characterized by dendritic structure. In the fusion zone, the columnar grains existed at one side of the welding seam. The fibrous organization was found in the base metal, and also in the heat affected zone (HAZ) where the recrystallization occurred. The HAZ was the weakest position of the welded joint due to the coarsening of Mg2Si phase. The type of tensile fracture was ductile fracture.
基金The authors would like to thank Mr Tetsuji Kuwabara of NAC Image Technology Inc.for support of high-speed photographingThis work was supported in part by MEXT Quantum Leap Flagship Program(MEXT Q-LEAP)Grant No.JPMXS0118068348,JSPS KAKENHI Grant Nos.JP16H04247,JP16K14417,and 19K22061This work was funded in part by ImPACT Program of Council for Science,Technology and Innovation(Cabinet Office,Government of Japan).
文摘The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a high number of solutes,such as copper(Cu),magnesium(Mg),and manganese(Mn),causing solidification cracking.If high speed welding of 2024 aluminum alloy without the use of filler is achieved,the applicability of 2024 aluminum alloys will expand.Grain refining is one of the methods used to prevent solidification cracking in weld metal,although it has never been achieved for high-speed laser welding of 2024 aluminum alloy without filler.Here,we propose a short-pulsed,laser-induced,grain-refining method during continuous wave laser welding without filler.Bead-on-plate welding was performed on a 2024-T3 aluminum alloy at a welding speed of 1 m min−1 with a single mode fiber laser at a wavelength of 1070 nm and power of 1 kW.Areas in and around the molten pool were irradiated with nanosecond laser pulses at a wavelength of 1064 nm,pulse width of 10 ns,and pulse energy of 430 mJ.The grain-refinement effect was confirmed when laser pulses were irradiated on the molten pool.The grain-refinement region was formed in a semicircular shape along the solid–liquid interface.Results of the vertical section indicate that the grain-refinement region reached a depth of 1 mm along the solid–liquid interface.The Vickers hardness test results demonstrated that the hardness increased as a result of grain refinement and that the progress of solidification cracking was suppressed in the grain refinement region.
基金This project is supported by National Natural Science Foundation of China(59975068) and Science & Technology Pillar Program of Tianjin(10ZCKFSF00200).
文摘An analysis with Fourier series on electric signals of meso-spray process of pulse MIG welding of aluminum shows many harmonic waves of different frequency in the signals, including the inherent high, low frequency elementary waves of short circuit and the harmonic waves from pulse current besides the noise signals of high frequency. The wavelet filtering with adjustable threshold is applied to study and handle the electric signals from meso-spray process of pulse MIG welding of aluminum, displaying a good solution on suppressing the noise in the signals.
基金Funded by the Center of Excellence in Metals and Materials Engineering(CEMME),Faculty of Engineering,Prince of Songkla UniversitySupported by the National Science,Research and Innovation Fund(NSRF)and Prince of Songkla University(No.ENG6505079S)。
文摘Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current.Microstructure and mechanical characteristics of the joints before and after repairing were investigated by examining macrostructure,microstructure,and distributions of porosity in the weld metal(WM),and by hardness,tensile,and bending tests.We observed that the welding current,phase transformations in heat-affected zone(HAZ)and porosity introduced in the WM during welding influence on its mechanical properties in sequence.The experimental results showed that the bead width and penetration as well as size of pores in the joints were mainly influenced by the welding currents.The sound joints were obtained at a welding current of 140 A with or without pulsed current when welding speed and gas flow rate were set at 20 cm·min-1 and 15 L·min-1,respectively.Among them,the decrease in mechanical properties of repair weld(RW)was directly related to the phase transformations in the over-ageing zone due to the double welding thermal cycles and elevated distribution of porosity in the WM.In addition,it was observed that the comparatively smaller grain size and lower porosity in WM of the RW produced by pulsed TIG welding gave a positive effect on its mechanical properties.
基金The research is supported by the National Natural Science Foundation of China ( No. 50975015 and No. 51005011 ) the China Postdoctoral Science Foundation (No. 20090460186).
文摘A novel ultrafast-convert hybrid pulse variable polarity gas tungsten arc welding process (HPVP-GTAW) is developed. High frequency pulse square-wave current which has a frequency of more than 20 kHz is exactly integrated in the positive polarity current duration. The effects of pulse current parameters on arc characteristics and weld penetration have been studied during the HPVP-GTAW process using Al-5. 8 Mg alloy plates. The arc characteristics studied by arc voltage and its profile, weld penetration noted by the ratio of weld depth to width have been found to be influenced significantly by the pulse current. The experimental results show that the HPVP-GTA W process can improve the arc profile predominantly and obtain the higher weld penetration with lower heat input. The observation may help in understanding the weld characteristics with respect to variation in the pulse current parameters which may be beneficial in using the novel HPVP-GTAW process to produce the better weld quality of aluminum alloy plates.
文摘Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones.
文摘Laser-MIG hybrid welding process was dealt with 6 mm thick 5083Hl16 Al-Mg alloy plate in butt-joint configuration. Weld formation principle during hybrid welding was explained. The joint properties and microstructure characteristics of welded joints were analyzed by tensile tests, fractographs observed by optical microscopy and scanning electron microscopy (SEM). Higher heat input could obtain better mechanical properties, and tensile strength and elongation reached 97.2%, 81% of the base metal, respectively. Fracture position traasited from fusion line to weld center in the higher heat input, and fracture location were only in the center of welded joints for the heat input relatively small.
基金Projects(2019JJ70077,2019JJ50510) supported by the National Science Foundation of Hunan Province,ChinaProject(31665004) supported by Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,ChinaProjects(18B552,18B285) supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and time was investigated by transmission electron microscopy and scanning electron microscopy. The mechanical properties were examined by hardness test and tensile test. The results showed that the micro-hardness was sensitive to heat treatment temperature and time. Increasing temperature was beneficial to the shortening of peak aging time. There were a large number of dislocations and few precipitates in the welded joints. With the increase of post-weld heat treatment temperature and time, the density of dislocation decreased. Meanwhile, the strengthening phase precipitated and grew up gradually. When the post-weld heat treatment temperature increased up to 200℃, large Q' phases were observed. And they were responsible for the peak value of the micro-hardness in the welded joints.
基金The research is supported by the China Postdoctoral Science Foundation (No. 20090460186).
文摘A novel ultrafast-convert hybrid pulse square-wave variable polarity arc welding power source was developed. The variable polarity current which crossed zero with no dead time possessed the ultrafast converting speed and the series of ultrasonic pulse current were superimposed in the positive polarity current duration. A high-efficiency hybrid pulse variable polarity gas tungsten arc welding (HPVP-GTAW)process for aluminum alloys was achieved. With X-ray inspection, microstructure analysis, tensile tests and scanning electron microscopy (SEM) for fracture surface, the square butt welding cbaracteristics of 5A06, 2A14 and 2219 aluminum alloys were tested, respectively. Experimental results show that microstructure and mechanical properties of these aluminum alloy welded joints are influenced significantly by the introduction of ultrasonic pulse current. The weld quality is improved predominantly by the novel HPVP-GTA W process.
文摘The synchronous acquisition system of droplet image inspection and arc electric signals were established and the droplet transition characteristics of aluminum alloys were researched in the plasma-MIG welding process.Typical droplet transition modes include globular transfer mode,short circuiting transfer mode,metastable spray transfer mode and projected transfer mode.The result indicates that MIG droplet transfer frequency and droplet transfer modes are changed by introducing the plasma arc in the plasma-MIG welding process compared with the MIG welding on the aluminum alloys,which broadens the range of welding parameters when the stable welding process proceeds.The metastable spray transfer and projected transfer mode are proved to be the most optimal modes by comparing the stability of electronic signal,droplet transition,weld appearance and weld penetration.