期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Development of a wide-range and fast-response digitizing pulse signal acquisition and processing system for neutron flux monitoring on EAST 被引量:1
1
作者 Li Yang Hong-Rui Cao +7 位作者 Jin-Long Zhao Zi-Han Zhang Qiang Li Guo-Bin Wu Yong-Qiang Zhang Guo-Qiang Zhong Li-Qun Hu Zi-Jun Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第3期126-136,共11页
The neutron count rate fluctuation reaches six orders of magnitude between the ohmic plasma scenario and high power of auxiliary heating on an experimental advanced superconducting tokamak(EAST).The measurement result... The neutron count rate fluctuation reaches six orders of magnitude between the ohmic plasma scenario and high power of auxiliary heating on an experimental advanced superconducting tokamak(EAST).The measurement result of neutron flux monitoring(NFM)is a significant feedback parameter related to the acquisition of radiation protection-related information and rapid fluctuations in neutron emission induced by plasma magnetohydrodynamic activity.Therefore,a wide range and high time resolution are required for the NFM system on EAST.To satisfy these requirements,a digital pulse signal acquisition and processing system with a wide dynamic range and fast response time was developed.The present study was conducted using a field-programmable gate array(FPGA)and peripheral component interconnect extension for instrument express(PXIe)platform.The digital dual measurement modes,which are composed of the pulse-counting mode and AC coupled square integral's Campbelling mode,were designed to expand the measurement range of the signal acquisition and processing system.The time resolution of the signal acquisition and processing system was improved from 10 to 1 ms owing to utilizing highspeed analog-to-digital converters(ADCs),a high-speed PXIe communication with a direct memory access(DMA)mode,and online data preprocessing technology of FPGA.The signal acquisition and processing system was tested experimentally in the EAST radiation field.The test results showed that the time resolution of NFM was improved to 1 ms,and the dynamic range of the neutron counts rate was expanded to more than 10^(6) counts per second.The Campbelling mode was calibrated using a multipoint average linear fitting method;subsequently,the fitting coefficient reached 0.9911.Therefore,the newly developed pulse signal acquisition and processing system ensures that the NFM system meets the requirements of high-parameter experiments conducted on EAST more effectively. 展开更多
关键词 EAST Neutron flux monitoring High time resolution Wide range pulse signal acquisition and processing system
下载PDF
Design and Implementation of a Chinese Pulse Condition Acquisition System
2
作者 Rui Wang Shilong Lu +2 位作者 Qingjuan Li Lei Xu Fei Chang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2016年第4期449-458,共10页
Nowadays, with improvements in the quality of life, people are paying more attention to their health. Traditional Chinese medicine offers great advantages for daily care. In this paper, we present the development of a... Nowadays, with improvements in the quality of life, people are paying more attention to their health. Traditional Chinese medicine offers great advantages for daily care. In this paper, we present the development of a remote health care system, namely, Chinese Pulse Condition Acquisition System (CPCAS), based on the principle of Chinese pulse diagnosis in Chinese medicine and a wireless sensor network. We designed a remote health care terminal with a mini-pulse collection bench to overcome the challenge of differences in pulse characters of different people. An effective measured pressure control algorithm is proposed to achieve a balance between control accuracy and control time. The special signal conditioning circuit showed good performance in analog pulse signal processing. We also performed significant research to address the challenges of symptom recognition. Other distinctive features of this system include the following: intelligent sensing, a wireless health care network, effective energy management, small size, lightweight, and the ability to be networked for remote management. In this paper, we have introduced the design and implementation of CPCAS. We also demonstrate the use of the system and give evaluations on this system by several experiments. Our results indicate that CPCAS has significant practical feasibility. 展开更多
关键词 Chinese pulse Condition acquisition System (CPCAS) traditional Chinese medicine Chinese pulsediagnosis symptoms recognition wireless sensor network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部