Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for...Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for Impulse Radio Ultra-WideBand (IR-UWB) communication systems. This modulation scheme uses pulses with equal amplitude and different widths to carry different information. The receiver employs differences between similarity coefficients among these pulses to distinguish different information. Both theoretical analysis and simulation results verify that this novel scheme has a Signal to Noise Ratio (SNR) gain of about 1.75 dB compared with or- thogonal binary PPM, and has an SNR loss of about 1.4 dB compared with binary PAM. Although both the theoretical analysis and simulations are based on time-hopping multiple access, this modulation scheme can also be applied to other accessing techniques of UWB communication systems.展开更多
Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viabl...Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass, rapid growth and promising nutrient uptake rates. In this investigation, the responses of the optimal chlorophyll fluorescence yield of the five algal species in tumble culture were assessed at a temperature range of 10 - 30℃. The results revealed that Ulva lactuca was the most resistant species to high temperature, withstanding 30℃ for 4 h without apparent decline in the optimal chlorophyll fluorescence yield . While the arctic alga Palmaria palmata was the most vulnerable one, showing significant decline in the optimal chlorophyll fluorescence yield at 25℃ for 2 h. The cold-water species Laminaria japonica, however, demonstrated strong ability to cope with higher temperature (24 -26℃ ) for shorter time (within 24 h) without significant decline in the optimal chlorophyll fluorescence yield . Grateloupia turuturu showed a general decrease in the optimal chlorophyll fluorescence yield with the rising temperature from 23 to 30℃ , similar to the temperate kelp Undaria pinnatifida. Changes of chlorophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light. Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36°N was proposed according to these basic measurements.展开更多
Through analyzing the theoretical spreading principle,it has been proved in this paper that the benefit of pseudo-orthogonal carrier interferometry(PO-CI)spreading code is not supported when complex signal modulation(...Through analyzing the theoretical spreading principle,it has been proved in this paper that the benefit of pseudo-orthogonal carrier interferometry(PO-CI)spreading code is not supported when complex signal modulation(e.g.,quadrature phase-shift keying(QPSK)and quadrature amplitude modulation(QAM))types are employed.On this basis,a novel and feasible structure for this problem is brought forward.Within the structure mentioned,instead of complex modulation patterns,pulse amplitude modulation(PAM)combined with PO-CI spreading code is utilized.This allows us to maintain the throughput increase of a multi-carrier code division multiple access(MC-CDMA)system with minimal loss in performance and no bandwidth expansion.展开更多
We propose an encryption technique for underwater visible light communication[UVLC]based on chaotic phase scrambling[PS]and conjugate frequency hopping[CFH].The technique is experimentally tested using an 8-level puls...We propose an encryption technique for underwater visible light communication[UVLC]based on chaotic phase scrambling[PS]and conjugate frequency hopping[CFH].The technique is experimentally tested using an 8-level pulse amplitude modulation[PAM-8]and a 1.2 m underwater link.The security key of the phase scrambling code is generated according to a logistic map,and the frequency hopping is achieved by adding the same zero frequency points to the signal spectrum.The maximum transmission rate of 2.1 Gbit/s is measured with bit-error-rate[BER]below 7%the hard-decision forward error correction[HD-FEC]threshold of 3.8×10^(-3).展开更多
Probabilistically shaped(PS) pulse amplitude modulation(PAM) is a promising technique for intra-data-center networks due to its superior performance, for which a low-complexity and cost-effective distributed matching ...Probabilistically shaped(PS) pulse amplitude modulation(PAM) is a promising technique for intra-data-center networks due to its superior performance, for which a low-complexity and cost-effective distributed matching method is critical. In this work, we propose an energy-level-assigned method to yield PS-PAM-4 signals with various bit rates based on variable probabilistic distributions. We experimentally demonstrate the proposed method in a 25 Gbaud PS-PAM-4 transmission over a bandwidth of approximately 10 GHz. Compared to a uniform PAM-4 system, the proposed multi-distributed PS-PAM-4 system approaches the hard decision threshold at a wide range of received optical power for different applications.展开更多
A cost-effective ultra-dense wavelength-division-multiplexed passive optical network(UD-WDM PON) with speed of 12.5 Gbit/s and channel spacing of 12.5 GHz is proposed and demonstrated. The distributed feedback(DFB) la...A cost-effective ultra-dense wavelength-division-multiplexed passive optical network(UD-WDM PON) with speed of 12.5 Gbit/s and channel spacing of 12.5 GHz is proposed and demonstrated. The distributed feedback(DFB) lasers modulated in 4-level pulse amplitude modulation(4-PAM) format are used for downstream links, and the reflective semiconductor optical amplifiers(RSOAs) together with an optical frequency comb modulated in quadrature phase shift keying(QPSK) format are used for upstream links. We can achieve the error-free transmission of the upstream signals with speed of 12.5 Gbit/s even after 20 km single-mode fiber(SMF). The power penalty obtained by using the frequency comb generator instead of a tunable laser is around 0.5 d B. By using 11 DFB lasers and a set of intensity and phase modulators, it is possible to provide the seed light for 297 optical network units(ONUs) within the C-band.展开更多
文摘Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for Impulse Radio Ultra-WideBand (IR-UWB) communication systems. This modulation scheme uses pulses with equal amplitude and different widths to carry different information. The receiver employs differences between similarity coefficients among these pulses to distinguish different information. Both theoretical analysis and simulation results verify that this novel scheme has a Signal to Noise Ratio (SNR) gain of about 1.75 dB compared with or- thogonal binary PPM, and has an SNR loss of about 1.4 dB compared with binary PAM. Although both the theoretical analysis and simulations are based on time-hopping multiple access, this modulation scheme can also be applied to other accessing techniques of UWB communication systems.
基金The"863"Hi-Tech Research and Development Program of China under contract Nos2006AA10A412 and 2006AA10A416a projectfrom the National Natural Science Foundation of China under contract No.30671596+1 种基金a project from the Chinese Academy of Sciences under contract No.KSCX2-YW-N-47-07a project from the Ministry of Science and technology of China under contract No.2006GB24910469
文摘Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass, rapid growth and promising nutrient uptake rates. In this investigation, the responses of the optimal chlorophyll fluorescence yield of the five algal species in tumble culture were assessed at a temperature range of 10 - 30℃. The results revealed that Ulva lactuca was the most resistant species to high temperature, withstanding 30℃ for 4 h without apparent decline in the optimal chlorophyll fluorescence yield . While the arctic alga Palmaria palmata was the most vulnerable one, showing significant decline in the optimal chlorophyll fluorescence yield at 25℃ for 2 h. The cold-water species Laminaria japonica, however, demonstrated strong ability to cope with higher temperature (24 -26℃ ) for shorter time (within 24 h) without significant decline in the optimal chlorophyll fluorescence yield . Grateloupia turuturu showed a general decrease in the optimal chlorophyll fluorescence yield with the rising temperature from 23 to 30℃ , similar to the temperate kelp Undaria pinnatifida. Changes of chlorophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light. Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36°N was proposed according to these basic measurements.
基金supported by the National Natural Science Foundation of China (Grant No.60496312).
文摘Through analyzing the theoretical spreading principle,it has been proved in this paper that the benefit of pseudo-orthogonal carrier interferometry(PO-CI)spreading code is not supported when complex signal modulation(e.g.,quadrature phase-shift keying(QPSK)and quadrature amplitude modulation(QAM))types are employed.On this basis,a novel and feasible structure for this problem is brought forward.Within the structure mentioned,instead of complex modulation patterns,pulse amplitude modulation(PAM)combined with PO-CI spreading code is utilized.This allows us to maintain the throughput increase of a multi-carrier code division multiple access(MC-CDMA)system with minimal loss in performance and no bandwidth expansion.
基金supported by the National Key Research and Development Program of China(No.2022YFB2802803)the National Natural Science Foundation of China(Nos.61925104,62031011,and 62201157)the Major Key Project of PCL。
文摘We propose an encryption technique for underwater visible light communication[UVLC]based on chaotic phase scrambling[PS]and conjugate frequency hopping[CFH].The technique is experimentally tested using an 8-level pulse amplitude modulation[PAM-8]and a 1.2 m underwater link.The security key of the phase scrambling code is generated according to a logistic map,and the frequency hopping is achieved by adding the same zero frequency points to the signal spectrum.The maximum transmission rate of 2.1 Gbit/s is measured with bit-error-rate[BER]below 7%the hard-decision forward error correction[HD-FEC]threshold of 3.8×10^(-3).
基金This work was supported by the National Natural Science Foundation of China(No.62075147).
文摘Probabilistically shaped(PS) pulse amplitude modulation(PAM) is a promising technique for intra-data-center networks due to its superior performance, for which a low-complexity and cost-effective distributed matching method is critical. In this work, we propose an energy-level-assigned method to yield PS-PAM-4 signals with various bit rates based on variable probabilistic distributions. We experimentally demonstrate the proposed method in a 25 Gbaud PS-PAM-4 transmission over a bandwidth of approximately 10 GHz. Compared to a uniform PAM-4 system, the proposed multi-distributed PS-PAM-4 system approaches the hard decision threshold at a wide range of received optical power for different applications.
基金supported by the National Natural Science Foundation of China(No.61475015)
文摘A cost-effective ultra-dense wavelength-division-multiplexed passive optical network(UD-WDM PON) with speed of 12.5 Gbit/s and channel spacing of 12.5 GHz is proposed and demonstrated. The distributed feedback(DFB) lasers modulated in 4-level pulse amplitude modulation(4-PAM) format are used for downstream links, and the reflective semiconductor optical amplifiers(RSOAs) together with an optical frequency comb modulated in quadrature phase shift keying(QPSK) format are used for upstream links. We can achieve the error-free transmission of the upstream signals with speed of 12.5 Gbit/s even after 20 km single-mode fiber(SMF). The power penalty obtained by using the frequency comb generator instead of a tunable laser is around 0.5 d B. By using 11 DFB lasers and a set of intensity and phase modulators, it is possible to provide the seed light for 297 optical network units(ONUs) within the C-band.