The sintering resistance for conductive TiB2 and non-conductive A12O3 as well as empty die during pulse current sintering were investigated in this paper. Equivalent resistances were measured by current and valtage du...The sintering resistance for conductive TiB2 and non-conductive A12O3 as well as empty die during pulse current sintering were investigated in this paper. Equivalent resistances were measured by current and valtage during sintering the conductive and non-conductive materials in the same conditions. It is found that the current paths for conductive are different from those for non-conductive materials. For non-conductive materials, sintering resistances are influenced by powder sizes and heating rates, which indicates that pulse current has some interaction with non-conductive powders. For conductive TiB2 , sintering resistances are influenced by heating rates and ball-milling time, which indicates the effect of powders activated by spark.展开更多
Microstructure of reaction sintering of ZnAl2O4 at 1500℃ by hot-pressing(HP) and pulse electric current was investigated. The results indicated that the existed cracks in sintered body were caused by structure mismat...Microstructure of reaction sintering of ZnAl2O4 at 1500℃ by hot-pressing(HP) and pulse electric current was investigated. The results indicated that the existed cracks in sintered body were caused by structure mismatch. It is the evidence that periodical temperature field existed during pulse electric current sintering of nonconductive materials. The distance between high temperature areas was related to die diameter.展开更多
ZrO2-WC composites exhibit comparable mechanical properties as traditional WC-Co materials, which provides an opportunity to partially replace WC-Co for some applications. In this study, 2 mol.% Y2O3 stabilized ZrO2 c...ZrO2-WC composites exhibit comparable mechanical properties as traditional WC-Co materials, which provides an opportunity to partially replace WC-Co for some applications. In this study, 2 mol.% Y2O3 stabilized ZrO2 composites with 40 vol.% WC were consolidated in the 1150℃-1850℃ range under a pressure of 60 MPa by pulsed electric current sintering (PECS). The densification behavior, microstructure and phase constitution of the composites were investigated to clarify the role of the sintering temperature on the grain growth, mechanical properties and thermal stability of ZrO2 and WC components. Analysis results indicated that the composites sintered at 1350℃ and 1450℃ exhibited the highest tetragonal ZrO2 phase transformability, maximum toughness, and hardness and an optimal flexural strength. Chemical reaction of ZrO2 and C, originating from the graphite die, was detected in the composite PECS for 20 min at 1850℃ in vacuum.展开更多
利用液相法合成均径为57.5 nm的纳米铜颗粒,并对纳米铜颗粒进行系统的表征,包括有扫描电子显微镜(Scanning electron microscope,SEM)、透射电子显微镜(Transmission electron microscope,TEM)、X射线衍射(X-ray diffraction,XRD)以及...利用液相法合成均径为57.5 nm的纳米铜颗粒,并对纳米铜颗粒进行系统的表征,包括有扫描电子显微镜(Scanning electron microscope,SEM)、透射电子显微镜(Transmission electron microscope,TEM)、X射线衍射(X-ray diffraction,XRD)以及热重分析(Thermal gravity analysis,TGA)和差热分析(Differential thermal analysis,DTA),并利用超声手段将纳米铜颗粒均匀分散在水溶液中,从而得到了纳米铜焊膏。采取模板印刷的方法制备镍/纳米铜焊膏/铜的三明治结构,并研究不同脉冲电流烧结工艺下的三明治结构的剪切强度、截面微结构以及断口微结构特征。试验结果表明三明治结构的剪切强度随着电流的增加而增大,在电流为0.8 k A时,剪切强度可达到46.3 MPa,脉冲电流烧结纳米铜焊膏连接铜和镍基板在短时间(小于200 ms)内快速获得了高致密度、性能优良的焊点结构,同时纳米铜颗粒之间以及纳米铜颗粒与微米级的铜基板和镍基板之间实现了牢固的冶金连接。通过分析经脉冲电流烧结后得到的纳米铜焊膏内部的显微组织特征,提出了脉冲电流烧结纳米铜焊膏的烧结机理。展开更多
脉冲电流烧结过程的颈部形成机理,特别是非导电粉末材料,是需要着重研究的核心问题。以非导电Al_2O_3粉末为研究对象,引入L-S(Lord and Shulman)型广义热弹性方程,初步探究烧结初期非导电粉末颈部局部高温形成以及快速烧结机理。利用Com...脉冲电流烧结过程的颈部形成机理,特别是非导电粉末材料,是需要着重研究的核心问题。以非导电Al_2O_3粉末为研究对象,引入L-S(Lord and Shulman)型广义热弹性方程,初步探究烧结初期非导电粉末颈部局部高温形成以及快速烧结机理。利用Comsol Multiphysics模拟得到脉冲电流烧结过程中颗粒内部的温度场和应力场分布以及烧结颈部的化学势和空位浓度变化规律。数值结果表明,热以波的形式在烧结颈部产生叠加,形成局部高温。化学势变化表明:烧结初期表面扩散占主要作用,空位浓度差的突变使烧结颈部产生局部空位浓度梯度,促进烧结颈长过程,缩短烧结时间。展开更多
Ultra-high temperature ceramics (UHTCs) are most recently getting much attention for structural parts of hypersonic missiles with their cruising speed of more than Mach 5. Most of the UHTCs are poor sinterability carb...Ultra-high temperature ceramics (UHTCs) are most recently getting much attention for structural parts of hypersonic missiles with their cruising speed of more than Mach 5. Most of the UHTCs are poor sinterability carbides, nitrides, and borides. Therefore, they have been studied and developed for a long time. However, there are still many problems to solve. In this paper, based on the solid-state reaction presented as an equation of (x + y)·ZrC + 2·y·B → x·ZrC + y·ZrB<sub>2</sub> + y·C, three-phase ZrC/ZrB<sub>2</sub>/C composites have been fabricated from ZrC and amorphous B powders using pulsed electric-current pressure sintering at 1373 to 2173 K for 6.0 × 10<sup>2</sup> s under 50 MPa in a vacuum. ZrC/ZrB2/C = 30/70/C~70/30/C vol% composites with the relative densities D<sub>r</sub> of 96.6 to 98.7% were obtained at 2073 K. The 60/40/C vol% composite revealed high bending strength σ<sub>b</sub> (554 MPa), Vickers hardness H<sub>v</sub> (19.2 GPa) and moderate fracture toughness K<sub>IC</sub> (5.25 MPa·m<sup>1/2</sup>) at room temperature. Furthermore, all composites showed elastic deformation up to 1873 K and revealed σ<sub>b</sub> more than 600 MPa at this temperature, in addition, some composites showed higher σ<sub>b</sub> than 900 MPa at the same temperature. These high mechanical behaviors are discussed with those of the simple binary ZrC/ZrB<sub>2</sub> composites which were fabricated under the same conditions except for their starting materials. The best mechanical properties of binary composites were σ<sub>b</sub> (474 MPa), H<sub>v</sub> (18.5 GPa), and K<sub>IC</sub> (4.45 MPa·m<sup>1/2</sup>) at room temperature, and σ<sub>b</sub> of 400 - 700 MPa at 1873 K. Overall, three-phase composites, nevertheless including soft carbon, have higher mechanical properties than the binary composites.展开更多
In this study we fabricated, for the first time, magnesium gallate (MgGa_(2)O_(4), a partially inverted spinel) transparent ceramics, both undoped and doped with 1 at% Ni. The specimens were derived from in-house prep...In this study we fabricated, for the first time, magnesium gallate (MgGa_(2)O_(4), a partially inverted spinel) transparent ceramics, both undoped and doped with 1 at% Ni. The specimens were derived from in-house prepared powder, with a crystallite size of ∼10 nm (by wet chemistry) and densified by pulsed electric current sintering (PECS;peak temperature 950 ℃ for 90 min). Densification levels of 99.84% and 99.52% of theoretical density were attained for doped and undoped materials, respectively. Doping with Ni was seen to marginally improve the densification level. Quite transparent specimens were produced: the best showing transmission of ∼89% of the theoretical level (thickness t = 0.85 mm). The absorption spectra revealed that the dopant was accumulated as Ni^(2+) in the octahedral sites of the lattice, as occurs in single-crystal specimens. After excitation at 980 nm, the doped disks exhibited a wide fluorescence band centered at 1264 nm.展开更多
基金Supported by the Natural Science Foundation of China (59872024) Key Teacher Fund of National Education Ministry and Fund of State Key Lab of Plastic Forming Simulation and Die and Mould Technology(02 -11)
文摘The sintering resistance for conductive TiB2 and non-conductive A12O3 as well as empty die during pulse current sintering were investigated in this paper. Equivalent resistances were measured by current and valtage during sintering the conductive and non-conductive materials in the same conditions. It is found that the current paths for conductive are different from those for non-conductive materials. For non-conductive materials, sintering resistances are influenced by powder sizes and heating rates, which indicates that pulse current has some interaction with non-conductive powders. For conductive TiB2 , sintering resistances are influenced by heating rates and ball-milling time, which indicates the effect of powders activated by spark.
基金This work was supported by the National Natural Science Foundation of China under grant No.50232020 and 50220160657.
文摘Microstructure of reaction sintering of ZnAl2O4 at 1500℃ by hot-pressing(HP) and pulse electric current was investigated. The results indicated that the existed cracks in sintered body were caused by structure mismatch. It is the evidence that periodical temperature field existed during pulse electric current sintering of nonconductive materials. The distance between high temperature areas was related to die diameter.
文摘ZrO2-WC composites exhibit comparable mechanical properties as traditional WC-Co materials, which provides an opportunity to partially replace WC-Co for some applications. In this study, 2 mol.% Y2O3 stabilized ZrO2 composites with 40 vol.% WC were consolidated in the 1150℃-1850℃ range under a pressure of 60 MPa by pulsed electric current sintering (PECS). The densification behavior, microstructure and phase constitution of the composites were investigated to clarify the role of the sintering temperature on the grain growth, mechanical properties and thermal stability of ZrO2 and WC components. Analysis results indicated that the composites sintered at 1350℃ and 1450℃ exhibited the highest tetragonal ZrO2 phase transformability, maximum toughness, and hardness and an optimal flexural strength. Chemical reaction of ZrO2 and C, originating from the graphite die, was detected in the composite PECS for 20 min at 1850℃ in vacuum.
文摘利用液相法合成均径为57.5 nm的纳米铜颗粒,并对纳米铜颗粒进行系统的表征,包括有扫描电子显微镜(Scanning electron microscope,SEM)、透射电子显微镜(Transmission electron microscope,TEM)、X射线衍射(X-ray diffraction,XRD)以及热重分析(Thermal gravity analysis,TGA)和差热分析(Differential thermal analysis,DTA),并利用超声手段将纳米铜颗粒均匀分散在水溶液中,从而得到了纳米铜焊膏。采取模板印刷的方法制备镍/纳米铜焊膏/铜的三明治结构,并研究不同脉冲电流烧结工艺下的三明治结构的剪切强度、截面微结构以及断口微结构特征。试验结果表明三明治结构的剪切强度随着电流的增加而增大,在电流为0.8 k A时,剪切强度可达到46.3 MPa,脉冲电流烧结纳米铜焊膏连接铜和镍基板在短时间(小于200 ms)内快速获得了高致密度、性能优良的焊点结构,同时纳米铜颗粒之间以及纳米铜颗粒与微米级的铜基板和镍基板之间实现了牢固的冶金连接。通过分析经脉冲电流烧结后得到的纳米铜焊膏内部的显微组织特征,提出了脉冲电流烧结纳米铜焊膏的烧结机理。
文摘脉冲电流烧结过程的颈部形成机理,特别是非导电粉末材料,是需要着重研究的核心问题。以非导电Al_2O_3粉末为研究对象,引入L-S(Lord and Shulman)型广义热弹性方程,初步探究烧结初期非导电粉末颈部局部高温形成以及快速烧结机理。利用Comsol Multiphysics模拟得到脉冲电流烧结过程中颗粒内部的温度场和应力场分布以及烧结颈部的化学势和空位浓度变化规律。数值结果表明,热以波的形式在烧结颈部产生叠加,形成局部高温。化学势变化表明:烧结初期表面扩散占主要作用,空位浓度差的突变使烧结颈部产生局部空位浓度梯度,促进烧结颈长过程,缩短烧结时间。
文摘Ultra-high temperature ceramics (UHTCs) are most recently getting much attention for structural parts of hypersonic missiles with their cruising speed of more than Mach 5. Most of the UHTCs are poor sinterability carbides, nitrides, and borides. Therefore, they have been studied and developed for a long time. However, there are still many problems to solve. In this paper, based on the solid-state reaction presented as an equation of (x + y)·ZrC + 2·y·B → x·ZrC + y·ZrB<sub>2</sub> + y·C, three-phase ZrC/ZrB<sub>2</sub>/C composites have been fabricated from ZrC and amorphous B powders using pulsed electric-current pressure sintering at 1373 to 2173 K for 6.0 × 10<sup>2</sup> s under 50 MPa in a vacuum. ZrC/ZrB2/C = 30/70/C~70/30/C vol% composites with the relative densities D<sub>r</sub> of 96.6 to 98.7% were obtained at 2073 K. The 60/40/C vol% composite revealed high bending strength σ<sub>b</sub> (554 MPa), Vickers hardness H<sub>v</sub> (19.2 GPa) and moderate fracture toughness K<sub>IC</sub> (5.25 MPa·m<sup>1/2</sup>) at room temperature. Furthermore, all composites showed elastic deformation up to 1873 K and revealed σ<sub>b</sub> more than 600 MPa at this temperature, in addition, some composites showed higher σ<sub>b</sub> than 900 MPa at the same temperature. These high mechanical behaviors are discussed with those of the simple binary ZrC/ZrB<sub>2</sub> composites which were fabricated under the same conditions except for their starting materials. The best mechanical properties of binary composites were σ<sub>b</sub> (474 MPa), H<sub>v</sub> (18.5 GPa), and K<sub>IC</sub> (4.45 MPa·m<sup>1/2</sup>) at room temperature, and σ<sub>b</sub> of 400 - 700 MPa at 1873 K. Overall, three-phase composites, nevertheless including soft carbon, have higher mechanical properties than the binary composites.
基金The authors gratefully acknowledge the National Science Foundation CAREER Grant(No.1554094)Office of Naval Research(No.N00014-17-1-2548)for funding this researchPart of this material(Raman data)is based upon work supported by the National Science Foundation(No.DMR-1626164).
文摘In this study we fabricated, for the first time, magnesium gallate (MgGa_(2)O_(4), a partially inverted spinel) transparent ceramics, both undoped and doped with 1 at% Ni. The specimens were derived from in-house prepared powder, with a crystallite size of ∼10 nm (by wet chemistry) and densified by pulsed electric current sintering (PECS;peak temperature 950 ℃ for 90 min). Densification levels of 99.84% and 99.52% of theoretical density were attained for doped and undoped materials, respectively. Doping with Ni was seen to marginally improve the densification level. Quite transparent specimens were produced: the best showing transmission of ∼89% of the theoretical level (thickness t = 0.85 mm). The absorption spectra revealed that the dopant was accumulated as Ni^(2+) in the octahedral sites of the lattice, as occurs in single-crystal specimens. After excitation at 980 nm, the doped disks exhibited a wide fluorescence band centered at 1264 nm.