Pulsed field gradient nuclear magnetic resonance (PFG NMR) has been performed to study the diffusion of organic solvents into semicrystalline polyethylene particles. Self-diffusion coefficients in different domains ...Pulsed field gradient nuclear magnetic resonance (PFG NMR) has been performed to study the diffusion of organic solvents into semicrystalline polyethylene particles. Self-diffusion coefficients in different domains of the sample can be extracted through a bi- exponential fit to the echo intensity attenuation, which allows the precise determination of the tortuosity of the polyethylene particles. Further exploration comes from the measurements with branched polyethylene particles and it was found that the diffusion in polymer phase contributed significantly to the slow component of the exponential decay curve. 2007 Jing Dai Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Cloud-based quantum computing is anticipated to be the most useful and reachable form for public users to experience with the power of quantum. As initial attempts, IBM Q has launched influential cloud services on a s...Cloud-based quantum computing is anticipated to be the most useful and reachable form for public users to experience with the power of quantum. As initial attempts, IBM Q has launched influential cloud services on a superconducting quantum processor in 2016, but no other platforms has followed up yet. Here,we report our new cloud quantum computing service – NMRCloud Q(http://nmrcloudq.com/zh-hans/),where nuclear magnetic resonance, one of the pioneer platforms with mature techniques in experimental quantum computing, plays as the role of implementing computing tasks. Our service provides a comprehensive software environment preconfigured with a list of quantum information processing packages,and aims to be freely accessible to either amateurs that look forward to keeping pace with this quantum era or professionals that are interested in carrying out real quantum computing experiments in person. In our current version, four qubits are already usable with in average 99.10% single-qubit gate fidelity and 97.15% two-qubit fidelity via randomized benchmaking tests. Improved control precisions as well as a new seven-qubit processor are also in preparation and will be available later.展开更多
Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data.Recently,a new class of correlation functions,called FORRELATION,has been introduced by Aaronson an...Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data.Recently,a new class of correlation functions,called FORRELATION,has been introduced by Aaronson and Ambainis for studying the query complexity of quantum devices.It was found that there exists a quantum query algorithm solving 2-fold FORRELATION problems with an exponential quantum speedup over all possible classical means,which represents essentially the largest possible separation between quantum and classical query complexities.Here we report an experimental study probing the2-fold and 3-fold FORRELATIONS encoded in nuclear spins.The major experimental challenge is to control the spin fluctuation to within a threshold value,which is achieved by developing a set of optimized GRAPE pulse sequences.Overall,our small-scale implementation indicates that the quantum query algorithm is capable of determining the values of FORRELATIONS within an acceptable accuracy required for demonstrating quantum supremacy,given the current technology and in the presence of experimental noise.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 20490205 and No. 20406017) ; CSC-DAAD (PPP2004) project.
文摘Pulsed field gradient nuclear magnetic resonance (PFG NMR) has been performed to study the diffusion of organic solvents into semicrystalline polyethylene particles. Self-diffusion coefficients in different domains of the sample can be extracted through a bi- exponential fit to the echo intensity attenuation, which allows the precise determination of the tortuosity of the polyethylene particles. Further exploration comes from the measurements with branched polyethylene particles and it was found that the diffusion in polymer phase contributed significantly to the slow component of the exponential decay curve. 2007 Jing Dai Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金the National Natural Science Foundation of China(11175094)National Basic Research Program of China(2015CB921002)+7 种基金supported by the National Natural Science Foundation of China(61771278)supported by the National Basic Research Program of China(2014CB921403,2016YFA0301201,2014CB848700 and 2013CB921800)National Natural Science Foundation of China(11421063,11534002,11375167 and 11605005)the National Science Fund for Distinguished Young Scholars(11425523)NSAF(U1530401)Natural Sciences and Engineering Research Council of Canada(NSERC)Canadian Institute for Advanced Research(CIFAR)Chinese Ministry of Education(20173080024)
文摘Cloud-based quantum computing is anticipated to be the most useful and reachable form for public users to experience with the power of quantum. As initial attempts, IBM Q has launched influential cloud services on a superconducting quantum processor in 2016, but no other platforms has followed up yet. Here,we report our new cloud quantum computing service – NMRCloud Q(http://nmrcloudq.com/zh-hans/),where nuclear magnetic resonance, one of the pioneer platforms with mature techniques in experimental quantum computing, plays as the role of implementing computing tasks. Our service provides a comprehensive software environment preconfigured with a list of quantum information processing packages,and aims to be freely accessible to either amateurs that look forward to keeping pace with this quantum era or professionals that are interested in carrying out real quantum computing experiments in person. In our current version, four qubits are already usable with in average 99.10% single-qubit gate fidelity and 97.15% two-qubit fidelity via randomized benchmaking tests. Improved control precisions as well as a new seven-qubit processor are also in preparation and will be available later.
基金supported by the National Natural Science Foundation of China(11175094,91221205,and 11405093)the National Basic Research Program of China(2015CB921002)
文摘Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data.Recently,a new class of correlation functions,called FORRELATION,has been introduced by Aaronson and Ambainis for studying the query complexity of quantum devices.It was found that there exists a quantum query algorithm solving 2-fold FORRELATION problems with an exponential quantum speedup over all possible classical means,which represents essentially the largest possible separation between quantum and classical query complexities.Here we report an experimental study probing the2-fold and 3-fold FORRELATIONS encoded in nuclear spins.The major experimental challenge is to control the spin fluctuation to within a threshold value,which is achieved by developing a set of optimized GRAPE pulse sequences.Overall,our small-scale implementation indicates that the quantum query algorithm is capable of determining the values of FORRELATIONS within an acceptable accuracy required for demonstrating quantum supremacy,given the current technology and in the presence of experimental noise.