The problem of optimal periodic pulse jamming design for a quadrature phase shift keying(QPSK)communication system is investigated.First a closed-form bit-error-rate(BER)of QPSK system under the jamming of pulse s...The problem of optimal periodic pulse jamming design for a quadrature phase shift keying(QPSK)communication system is investigated.First a closed-form bit-error-rate(BER)of QPSK system under the jamming of pulse signal is derived.Then the asymptotic performance of the derived BER is analyzed as the signal-to-noise ratio(SNR)grows to infinity.In order to maximize the BER of the QPSK system,the optimal parameters of periodic pulse jamming signal,including the duty cycle and signal-tojamming power ratio(SJR),are found out.Numerical results are presented to verify our analytical results and the optimality of our design.展开更多
As an indispensable part of </span><span style="font-family:Verdana;">global</span><span style="font-family:Verdana;"> satellite navigation system, the frequency band of DME...As an indispensable part of </span><span style="font-family:Verdana;">global</span><span style="font-family:Verdana;"> satellite navigation system, the frequency band of DME will overlap with that of the navigation signal, which will cause the signal from the DME platform to be accepted by the Global Navigation Satellite System receiver and form interference. Therefore, it is of great significance to study an effective algorithm to suppress DME pulse interference. This paper has the following research on this problem. In this paper, wavelet packet transform is used to solve for the suppression of </span><span style="font-family:Verdana;">DME</span><span style="font-family:Verdana;"> pulse interference method, wavelet packet analysis belongs to the linear time-frequency analysis method, it has good time-frequency localization characteristics and the signal adaptive ability, due to the function of wavelet packet and parameter selection of DME will affect the ability of interference suppression, combining with the theory of wavelet </span><span style="font-family:Verdana;">threshold</span><span style="font-family:Verdana;">, function type and decomposition series are discussed to prove the validity of the selected parameters on the pulse interference suppression</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.展开更多
基金Supported by the National Natural Science Foundation of China(61271258)
文摘The problem of optimal periodic pulse jamming design for a quadrature phase shift keying(QPSK)communication system is investigated.First a closed-form bit-error-rate(BER)of QPSK system under the jamming of pulse signal is derived.Then the asymptotic performance of the derived BER is analyzed as the signal-to-noise ratio(SNR)grows to infinity.In order to maximize the BER of the QPSK system,the optimal parameters of periodic pulse jamming signal,including the duty cycle and signal-tojamming power ratio(SJR),are found out.Numerical results are presented to verify our analytical results and the optimality of our design.
文摘As an indispensable part of </span><span style="font-family:Verdana;">global</span><span style="font-family:Verdana;"> satellite navigation system, the frequency band of DME will overlap with that of the navigation signal, which will cause the signal from the DME platform to be accepted by the Global Navigation Satellite System receiver and form interference. Therefore, it is of great significance to study an effective algorithm to suppress DME pulse interference. This paper has the following research on this problem. In this paper, wavelet packet transform is used to solve for the suppression of </span><span style="font-family:Verdana;">DME</span><span style="font-family:Verdana;"> pulse interference method, wavelet packet analysis belongs to the linear time-frequency analysis method, it has good time-frequency localization characteristics and the signal adaptive ability, due to the function of wavelet packet and parameter selection of DME will affect the ability of interference suppression, combining with the theory of wavelet </span><span style="font-family:Verdana;">threshold</span><span style="font-family:Verdana;">, function type and decomposition series are discussed to prove the validity of the selected parameters on the pulse interference suppression</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.