The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not inves...The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not investigated. We show a supplementary explanation of this scheme and present another scheme to generate linear isolated attosecond pulses by combining a circularly polarized pulse with an elliptically polarized pulse. High-order harmonic generation and quantum path control are investigated to compare these two schemes. Both schemes can obtain supercontinuum spectra plateau from about 200eV to 550eV, which belong to the water window region. It is found that the latter scheme can clearly eliminate the short quantum path and extend the harmonic plateau. A linear isolated attosecond pulse with a duration of sub-6Oas can be generated by superposing a bandwidth of 70eV.展开更多
The mismatch effect induced by the radial motion of a target is analyzed for linear frequency modulated (LFM) signals. Then, a novel integrated processing scheme is proposed to re- solve the delay-Doppler coupling e...The mismatch effect induced by the radial motion of a target is analyzed for linear frequency modulated (LFM) signals. Then, a novel integrated processing scheme is proposed to re- solve the delay-Doppler coupling effect in LFM pulse compression. Therefore the range and radial velocity of the target can be si- multaneously estimated with a narrowband LFM pulse. Finally, numerical simulation results demonstrate the effectiveness and good performance of the proposed method.展开更多
In this paper,we give a review of some most powerful pulsed systems developed at the Institute of High Current Electronics(HCEI),Siberian Branch,Russian Academy of Sciences,and describe latest achievements of the team...In this paper,we give a review of some most powerful pulsed systems developed at the Institute of High Current Electronics(HCEI),Siberian Branch,Russian Academy of Sciences,and describe latest achievements of the teams dealing with these installations.Besides the presented high-power systems,HCEI performs numerous investigations using much less powerful generators.For instance,last year much attention was paying to the research and development of the intense low-energy(<200 kV)high-current electron and ion beam and plasma sources,and their application in the technology[1-3].展开更多
The robust control law for gas tungsten arc welding dynamic process, which is a typical sampled-data system and full of uncertainties, is presented. By using the Lyapunov, second method, the robust control and robust ...The robust control law for gas tungsten arc welding dynamic process, which is a typical sampled-data system and full of uncertainties, is presented. By using the Lyapunov, second method, the robust control and robust optimal control for a class of sampled-data systems whose underlying continuous-time systems are subjected to structured uncertainties are discussed in time-domain. As a result, some sufficient conditions of robust stability and the corresponding robust control laws are derived. All these results are designed by solving a class of linear matrix inequalities (LMIs) and a class of dynamic optimization problem with LMIs constraints respectively. An example adapted under some experimental conditions in the dynamic process of gas tungsten arc welding system in which the controlled variable is the backside width of weld pool and controlling variable pulse duty ratio, is worked out to illustrate the proposed results, it is shown that the sampling period is the crucial design oarameter.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404204 and 11447208the Key Project of Chinese Ministry of Education under Grant No 211025+1 种基金the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20111404120004the Natural Science Foundation for Young Scientists of Shanxi Province under Grant No 2009021005
文摘The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not investigated. We show a supplementary explanation of this scheme and present another scheme to generate linear isolated attosecond pulses by combining a circularly polarized pulse with an elliptically polarized pulse. High-order harmonic generation and quantum path control are investigated to compare these two schemes. Both schemes can obtain supercontinuum spectra plateau from about 200eV to 550eV, which belong to the water window region. It is found that the latter scheme can clearly eliminate the short quantum path and extend the harmonic plateau. A linear isolated attosecond pulse with a duration of sub-6Oas can be generated by superposing a bandwidth of 70eV.
基金supported by the Pre-Research Foundation of National Defence of China
文摘The mismatch effect induced by the radial motion of a target is analyzed for linear frequency modulated (LFM) signals. Then, a novel integrated processing scheme is proposed to re- solve the delay-Doppler coupling effect in LFM pulse compression. Therefore the range and radial velocity of the target can be si- multaneously estimated with a narrowband LFM pulse. Finally, numerical simulation results demonstrate the effectiveness and good performance of the proposed method.
基金supported in part by Russian Foundation for Basic Research(project No.15-08-01324).
文摘In this paper,we give a review of some most powerful pulsed systems developed at the Institute of High Current Electronics(HCEI),Siberian Branch,Russian Academy of Sciences,and describe latest achievements of the teams dealing with these installations.Besides the presented high-power systems,HCEI performs numerous investigations using much less powerful generators.For instance,last year much attention was paying to the research and development of the intense low-energy(<200 kV)high-current electron and ion beam and plasma sources,and their application in the technology[1-3].
基金This project is supported by Doctor's Research Fund of Science Education Ministry of China(No.20060214004)Scientific Research Fund Education Ministry of China(No.206041)Scientific Research Fund of Harbin Sci-ence Bureau China(No.20051AAICG037).
文摘The robust control law for gas tungsten arc welding dynamic process, which is a typical sampled-data system and full of uncertainties, is presented. By using the Lyapunov, second method, the robust control and robust optimal control for a class of sampled-data systems whose underlying continuous-time systems are subjected to structured uncertainties are discussed in time-domain. As a result, some sufficient conditions of robust stability and the corresponding robust control laws are derived. All these results are designed by solving a class of linear matrix inequalities (LMIs) and a class of dynamic optimization problem with LMIs constraints respectively. An example adapted under some experimental conditions in the dynamic process of gas tungsten arc welding system in which the controlled variable is the backside width of weld pool and controlling variable pulse duty ratio, is worked out to illustrate the proposed results, it is shown that the sampling period is the crucial design oarameter.