期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Influences of working pressure on properties for TiO_2 films deposited by DC pulse magnetron sputtering 被引量:11
1
作者 ZHANG Can DING Wanyu +2 位作者 WANG Hualin CHAI Weiping JU Dongying 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第6期741-744,共4页
TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-r... TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-ray diffraction(XRD),atomic force microscopy(AFM) and ultraviolet spectrophotometer,respectively.The results indicated that working pressure was the key deposition parameter in?uencing the TiO2 film phase composition at room temperature,which directly affected its photocatalytic activity.With increasing working pressure,the target self-bias decreases monotonously.Therefore,low temperature TiO2 phase(anatase) could be deposited with high working pressure.The anatase TiO2 films deposited with 1.4 Pa working pressure displayed the highest photocatalytic activity by the decomposition of Methyl Orange solution,which the degradation rate reached the maximum(35%) after irradiation by ultraviolet light for 1 h. 展开更多
关键词 TiO2 film ANATASE UV induced photocatalysis DC pulse magnetron sputtering
下载PDF
Microstructure and Properties of the Cr–Si–N Coatings Deposited by Combining High-Power Impulse Magnetron Sputtering(HiPIMS) and Pulsed DC Magnetron Sputtering 被引量:1
2
作者 Tie-Gang Wang Yu Dong +3 位作者 Belachew Abera Gebrekidan Yan-Mei Liu Qi-Xiang Fan Kwang Ho Kim 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第7期688-696,共9页
The Cr–Si–N coatings were prepared by combining system of high-power impulse magnetron sputtering and pulsed DC magnetron sputtering. The Si content in the coating was adjusted by changing the sputtering power of th... The Cr–Si–N coatings were prepared by combining system of high-power impulse magnetron sputtering and pulsed DC magnetron sputtering. The Si content in the coating was adjusted by changing the sputtering power of the Si target.By virtue of electron-probe microanalysis, X-ray diffraction analysis and scanning electron microscopy, the influence of the Si content on the coating composition, phase constituents, deposition rate, surface morphology and microstructure was investigated systematically. In addition, the change rules of micro-hardness, internal stress, adhesion, friction coefficient and wear rate with increasing Si content were also obtained. In this work, the precipitation of silicon in the coating was found.With increasing Si content, the coating microstructure gradually evolved from continuous columnar to discontinuous columnar and quasi-equiaxed crystals; accordingly, the coating inner stress first declined sharply and then kept almost constant. Both the coating hardness and the friction coefficient have the same change tendency with the increase of the Si content, namely increasing at first and then decreasing. The Cr–Si–N coating presented the highest hardness and average friction coefficient for an Si content of about 9.7 at.%, but the wear resistance decreased slightly due to the high brittleness.The above phenomenon was attributed to a microstructural evolution of the Cr–Si–N coatings induced by the silicon addition. 展开更多
关键词 Cr–Si–N coating High-power impulse magnetron sputtering(HiPIMS) pulsed DC magnetron sputtering Mechanical property Friction coefficient
原文传递
Characterization of Ti-Cu Films Deposited by HPPMS and Effect on NO Catalytic Release and Platelet Adhesion Behavior
3
作者 陈涛 CHENG Dan +6 位作者 TAI Yuandong 景凤娟 SUN Hong XIE Dong LENG Yonxiang HUANG Nan KEN Yukimural 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期505-511,共7页
Ti-Cu films with different Cu concentrations were fabricated by high-power pulsed magnetron sputtering(HPPMS) to release copper ions and catalyze NO to improve the blood compatibility. The Cu concentrations of films... Ti-Cu films with different Cu concentrations were fabricated by high-power pulsed magnetron sputtering(HPPMS) to release copper ions and catalyze NO to improve the blood compatibility. The Cu concentrations of films were 25.7 at% and 68.8 at%. Pure Ti films were also fabricated. Copper release, catalytic release of nitric oxide(NO), and blood platelet adhesion of Ti-Cu films were studied. Ti-Cu films released copper ions in PBS solution and more Cu ions were released from films with 68.8 at% Cu. Ti-Cu films had excellent ability of catalytical decomposition of exogenous donor S-nitroso-N-acetyl-DL-penicillamine(SNAP) and as a result, nitric oxide(NO) was generated. The NO generation catalyzed by Ti-Cu films was significantly higher than that by pure Ti films. This was more eminent in the Ti-Cu films with 68.8 at% Cu. The platelet adhesion and activation of Ti-Cu films were significantly inhibited compared to that of pure Ti films in the presence of SNAP. The Ti-Cu film fabricated by HPPMS showed the ability of releasing Cu ions to catalyze SNAP to generate NO to inhibit platelet adhesion and activation. 展开更多
关键词 Ti-Cu film copper ions nitrogen oxide platelet adhesion high-power pulsed magnetron sputtering
下载PDF
Microstructure and corrosion resistance of vanadium films deposited at different target-substrate distance by HPPMS 被引量:2
4
作者 Chun-Wei Li Xiu-Bo Tian +2 位作者 Tian-Wei Liu Jian-Wei Qin Chun-Zhi Gong 《Rare Metals》 SCIE EI CAS CSCD 2014年第5期587-593,共7页
High power pulsed magnetron sputtering(HPPMS), a novel physical vapor deposition technology, was applied to prepare vanadium films on aluminum alloy substrate in this paper. The influence of target–substrate dista... High power pulsed magnetron sputtering(HPPMS), a novel physical vapor deposition technology, was applied to prepare vanadium films on aluminum alloy substrate in this paper. The influence of target–substrate distance(Dt–s)(ranging from 8 to 20 cm) on phase structure, surface morphology, deposition rate, and corrosion resistance of vanadium films was investigated. The results show that the vanadium films are textured with a preferential orientation in the(111) direction except for that fabricated at 20 cm. With Dt–sincreasing, the intensity of(111) diffraction peak of the films decreases and there exists a proper distance leading to the minimum surface roughness of 0.65 nm. The deposition rate decreases with Dt–sincreasing. All the V-coated aluminum samples possess better corrosion resistance than the control sample. The sample fabricated at Dt–sof 12 cm demonstrates the best corrosion resistance with the corrosion potential increasing by 0.19 V and the corrosion current decreasing by an order of magnitude compared with that of the substrate. The samples gain further improvement in corrosion resistance after annealing, and if compared with that of annealed aluminum alloy, then the corrosion potential of the sample fabricated at 20 cm increases by 0.415 V and the corrosion current decreases by two orders of magnitude after annealed at 200 °C. If the annealing temperature further rises to 300 °C, then the corrosion resistance of samples increases less obviously than that of the control sample. 展开更多
关键词 High power pulsed magnetron sputtering Vanadium films Target–substrate distance MICROSTRUCTURE Corrosion resistance
原文传递
Characterization of Microstructural and Morphological Properties in As-deposited Ta/NiFe/IrMn/CoFe/Ta Multilayer System 被引量:1
5
作者 Ramis Mustafa ksoglu Umut Sarac +1 位作者 Mustafa Yildirm Hakan inar 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第4期359-364,共6页
Surface morphology and its relationship with microstructure in Ta/NiFe/IrMn/CoFe/Ta multilayer system deposited by pulsed DC magnetron sputtering have been investigated in dependence of Ta buffer and NiFe seed layer t... Surface morphology and its relationship with microstructure in Ta/NiFe/IrMn/CoFe/Ta multilayer system deposited by pulsed DC magnetron sputtering have been investigated in dependence of Ta buffer and NiFe seed layer thicknesses using atomic force microscopy. The structural parameters such as grain size, dislocation density, texture and strain were calculated. For each surface, a self-affinity behavior with mean fractal dimensions in the range of 2.03-2.18 was found. Additionally, it was also observed that the surface of all samples has locally smooth textured surface structure in the short range. The texture aspect parameter and texture direction index have been obtained for isotropy/anisotropy surface texture. A significant relationship between the surface texture and the strength of the 〈111〉 texture in IrMn layer has been found. The analysis indicated that the surface roughness is strongly affected by the thicknesses of the NiFe seed and Ta buffer layers. 展开更多
关键词 pulsed DC magnetron sputtering Surface roughness Strain and texture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部