The selection of process parameter in the gas tungsten arc (GTA) welding of titanium alloy was presented for obtaining optimum grain size and hardness. Titanium alloy (Ti-6Al-4V) is one of the most important non-f...The selection of process parameter in the gas tungsten arc (GTA) welding of titanium alloy was presented for obtaining optimum grain size and hardness. Titanium alloy (Ti-6Al-4V) is one of the most important non-ferrous metals which offers great potential application in aerospace, biomedical and chemical industries, because of its low density (4.5 g/cm^3), excellent corrosion resistance, high strength, attractive fracture behaviour and high melting point (1678℃). The preferred welding process for titanium alloy is frequent GTA welding due to its comparatively easier applicability and better economy. In the case of single pass (GTA) welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one needs to carefully balance various pulse current parameters to reach an optimum combination. Four factors, five level, central composite, rotatable design matrix were used to optimize the required number of experimental conditions. Mathematical models were developed to predict the fusion zone grain size using analysis of variance (ANOVA) and regression analysis. The developed models were optimized using the traditional Hooke and Jeeve's algorithm. Experimental results were provided to illustrate the proposed approach.展开更多
The tenacity of heat-affected zone (HAZ) will decline and the size of grains will increase, because of the overheating on HAZ when submerged are welding (SAW) is ased to thick plate with high heat input. The shapi...The tenacity of heat-affected zone (HAZ) will decline and the size of grains will increase, because of the overheating on HAZ when submerged are welding (SAW) is ased to thick plate with high heat input. The shaping will worsen when SAW is used to thin plate with high current at high speed. A new SAW technology, the pulsed direct current (DC) automatic SAW, will be put forward in this paper in order to overcome the above shortcomings. And a pulsed controller with micro-controller unit (MCU) as the core, nixie tube (NT) and keyboard as the man-machine conversation interface is developed. The main functions of the pulsed controller include the output of pulsed welding current and the working with twinwire. The research has widely prospects in application with significant meanings in theory and practical engineering.展开更多
Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all hardware circuit, arc voltage during peak current stage is sampled and inte...Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all hardware circuit, arc voltage during peak current stage is sampled and integrated to indicate arc length, deviation of arc length and adjusting parameters are calculated and output to drive a step motor directly. According to the features of welding image grabbed with CCD camera, a special algorithm was developed to detect the central line of weld fast and accurately. Then an application system were established, whose static arc length error is ±0.1 mm with 20 A average current and 1 mm given arc length, static detection precision of weld is 0.01 mm , processing time of each image is less than 120 ms . Precision pulse TIG welding of some given thin stainless steel components with complicated curved surface was successfully realized.展开更多
The inner hole parts played an oriented or supporting role in engineering machinery and equipment,which are prone to appear surface damages such as wear,strain and corrosion. The precise pulse plasma arc powder weldin...The inner hole parts played an oriented or supporting role in engineering machinery and equipment,which are prone to appear surface damages such as wear,strain and corrosion. The precise pulse plasma arc powder welding method is used for surface damage repairing of inner hole parts in this paper. The working principle and process of the technology are illustrated,and the microstructure and property of repairing layer by precise pulse plasma powder welding and CO2 gas shielded welding are tested and observed by microscope,micro hardness tester and X-ray residual stress tester etc. Results showed that the substrate deformation of thin-walled inner hole parts samples by precise pulse plasma powder welding is relatively small. The repair layer and substrate is metallurgical bonding,the transition zones( including fusion zone and heat affected zone) are relatively narrow and the welding quality is good. It showed that the thin-walled inner hole parts can be repaired by this technology and equipment.展开更多
An empirical relationship to predict tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy was developed. Incorporating process parameters such as peak current, base current, pulse frequency...An empirical relationship to predict tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy was developed. Incorporating process parameters such as peak current, base current, pulse frequency and pulse on time were studied. The experiments were conducted based on a four-factor, five-level, central composite design matrix. The developed empirical relationship can be effectively used to predict the tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy joints at 95% confidence level. The results indicate that pulse frequency has the greatest influence on tensile strength, followed by peak current, pulse on time and base current.展开更多
In this paper the processes of melting and transfer of an electrode metal to the molten pool, hydrody- namics of molten pool in controlled pulsed arc welding in carbon dioxide have been investigated.The process of p...In this paper the processes of melting and transfer of an electrode metal to the molten pool, hydrody- namics of molten pool in controlled pulsed arc welding in carbon dioxide have been investigated.The process of pulsed arc welding with systematic short - circuits of the arc gap is realized by adaptive algo- rithms of pulsed control over main energetic parameters of welding - arc current and voltage,arc heated efficiency,peak,short - circuiting current, which provide the dosage of energy for energy for melting and transfer of every for of an electrode metal, the control over fluidity of the weld pool. Physica and mathematical models describing such processes in CO2, origind software hare been developed.The re- sults of physical simulation and mathemaical modelling permit to determine the influence of energetic parameters of the process on the condition of the 'power source-electrode-arc-molten pool' electrodynamic system at each moment of time.展开更多
Bring forward a new analytical method in order to evaluate the stability of the process of aluminum alloy pulsed MIG welding. The ratio of the first and the second peak in arc voltage signal probability density was se...Bring forward a new analytical method in order to evaluate the stability of the process of aluminum alloy pulsed MIG welding. The ratio of the first and the second peak in arc voltage signal probability density was selected to evaluate aluminum alloy pulse MIG welding stability. By calculating the arc voltage signal probability density from 80 sets of welding experiments, the ratio of the two peaks in arc voltage probability in every set was captured. And the evaluation system of aluminum alloy pulse MIG welding stability was established. The smaller the ratio of peaks in arc voltage signal probability density is, the better the stability of the welding will be;the bigger the ratio of peaks in arc voltage signal probability density is, the poorer the stability of the welding will be.展开更多
The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative stu...The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative study of similar nature has also been carried out during flux-cored arc weld deposition in globular and spray transfer modes.The effect of pulse parameters has been studied by considering their mean current and arc voltage.The arc characteristics studied by its root diameter,projected diameter and length,and the behavior of metal transfer noted by the metal transfer model and the droplet diameter have been found to vary significantly with the pulse parameters.The observation may help in understanding the arc characteristics with respect to the variation in pulse parameters which may be beneficial in using pulse current FCAW to produce desired weld quality.展开更多
A digital control of pulsed gas metal arc welding inverter was proposed. A control system consisting of analogue parts was replaced with a new digital control implemented in a TMS320LF2407A DSP chip. The design and co...A digital control of pulsed gas metal arc welding inverter was proposed. A control system consisting of analogue parts was replaced with a new digital control implemented in a TMS320LF2407A DSP chip. The design and constructional features of the whole digital control were presented. The resources of the DSP chip were efficiently utilized and the circuits are very concise, which can enhance the stability and reliability of welding inverter. Experimental results demonstrate that the developed digital control has the ability to accomplish the excellent pulsed gas metal arc welding process and the merits of the developed digital control are stable welding process, little spatter and perfect weld appearance.展开更多
According to the strategy of controlled pulse key-holing,a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding(PAW). Through sensing and processi...According to the strategy of controlled pulse key-holing,a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding(PAW). Through sensing and processing the efflux plasma voltage signals,the quantitative relationship among the welding current,efflux plasma voltage and backside weld width of the weld was established. PAW experiments show that the efflux plasma voltage can reflect the state of keyhole and backside weld width accurately. The closed-loop control tests validate the stability and reliability of the developed keyhole PAW system.展开更多
A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0—50 A is applied in pulsed TIG welding. The simulation model converted from the ma...A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0—50 A is applied in pulsed TIG welding. The simulation model converted from the mathematical model is run in MATLAB environment, and the discussion is focused on the way the peak current ranging from 29 A to 50 A and the time constant of arc in the span of 0.003—0.006 s influence the simulating results and the dynamic characteristic. The simulating data are close to that of welding experiments and correspond to the theoretical conclusion.展开更多
Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aeros...Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aerospace and petroleum industry. In the present paper an attempt is made to study various weld quality characteristics like weld bead geometry dimensions, micro hardness, microstructure, grain size and tensile properties of Pulsed Current Micro Plasma Welding of Inconel625sheets. Weld joint was prepared by fusing the two parent metals of Inconel625 sheets. Square butt joint is used and welding was carried out using Pulsed DCEN, without filler wire. Peak current, back current, pulse and pulse width are considered as the main influential input variables during the welding.展开更多
Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aeros...Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aerospace and petroleum industry. Micro Plasma Arc Welding (MPAW) is one of the important arc welding processes commonly using in fabric- cation of Nickel alloys. In the present paper welding of Inconel 625 sheets using pulsed current micro plasma arc weld- ing was discussed. The paper mainly focuses on studying the weld quality characteristics like weld pool geometry pa- rameters, microstructure, grain size, hardness and tensile properties of Pulsed Current Micro Plasma Arc Welded In- conel 625 sheets at different welding speeds. Results reveals that at a welding speed of 260 mm/minute better weld quality characteristics can be obtained.展开更多
Though the preferred welding process to weld aluminium alloy is frequently constant current gas tungsten arc welding (CCGTAW),it resulted in grain coarsening at the fusion zone and heat affected zone(HAZ).Hence,pulsed...Though the preferred welding process to weld aluminium alloy is frequently constant current gas tungsten arc welding (CCGTAW),it resulted in grain coarsening at the fusion zone and heat affected zone(HAZ).Hence,pulsed current gas tungsten arc welding(PCGTAW) was performed,to yield finer fusion zone grains,which leads to higher strength of AA6061 (Al-Mg-Si) aluminium alloy joints.In order to determine the most influential control factors which will yield minimum fusion zone grain size and maximum tensile strength of the joints,the traditional Hooke and Jeeves pattern search method was used.The experiments were carried out based on central composite design with 31 runs and an algorithm was developed to optimize the fusion zone grain size and the tensile strength of pulsed current gas tungsten arc welded AA6061 aluminium alloy joints.The results indicate that the peak current (Ip) and base current (IB) are the most significant parameters,to decide the fusion zone grain size and the tensile strength of the AA6061 aluminum alloy joints.展开更多
The development of closed-loop control systems is one of the most effective ways to improve the stability of the keyhole status during keyhole plasma arc welding (K-PAW). Due to the disadvantages of the "one-pulse-...The development of closed-loop control systems is one of the most effective ways to improve the stability of the keyhole status during keyhole plasma arc welding (K-PAW). Due to the disadvantages of the "one-pulse-one-keyhole" technology based on the conventional square current waveform, the controlled pulse welding current waveform is newly applied to control the keyhole open and close periodically. In order to realize the real-time control on the keyhole behavior with this advanced current waveform, welding experiments and system identification are conducted based on the classical control theory. One complete welding cycle can be divided into 3 periods. The keyhole establishing time is the most important time variable, which determines the keyhole behavior and welding process stability. At the same time, the averaged effiux plasma arc voltage during one pulse cycle can reflect the real keyhole dimension and status in a real-time manner. Therefore, two single-input-single-output (SISO) systems are proposed, in which keyhole establishing time and keyhole average dimension are taken as the system controlled variables respectively. Welding experiments are designed with the peak current varying randomly. Experiments show that the keyhole establishing time changes in an opposite direction to the varied peak current, and the averaged efflux plasma arc voltage varies with the same trend as the peak current. Based on the least squares technique and F test of classical system identification, second order difference equation for keyhole establishing time/peak current system and first order difference equation for keyhole average dimension/peak current system are obtained. It is proved that the calculated data by the two mathematical expressions are well matched with the measured data. The proposed research provides mathematical expressions and theoretical analysis to develop closed-loop systems for the controlled pulse K-PAW.展开更多
The interfacial reaction control of SiC_p/2124Al composites was investigated during pulsed argon arc welding. Meanwhile, the mechanical properties, the metallographic structure and interfacial microstructure of the in...The interfacial reaction control of SiC_p/2124Al composites was investigated during pulsed argon arc welding. Meanwhile, the mechanical properties, the metallographic structure and interfacial microstructure of the induced welding joint were tested and detected, respectively. The results reveal that the joint with excellent properties could be achieved by the proper selection of the special filling material and the addition of the pulse during welding. Moreover, the formation mechanism of the welding joint was discussed and the corresponding measures on further improving the quality of the welding joint of SiC_p/2124Al composites were put forward in the condition of pulsed argon arc welding.展开更多
Based on the characteristics of "one keyhole in a pulse" in pulsed current plasma arc welding (PAW) , the transient variation process of weld pool in a pulse cycle is simulated through the establishment of corresp...Based on the characteristics of "one keyhole in a pulse" in pulsed current plasma arc welding (PAW) , the transient variation process of weld pool in a pulse cycle is simulated through the establishment of corresponding heat source model. And considering the effects of gravitational force, plasma arc pressure and surface tension on the weld pool surface, the dynamic change features of the keyhole shape in a pulse cycle are calculated by using surface deformation equation. Experiments are conducted and validate that the calctdated weld fusion line is in good agreement with the experimental results.展开更多
Numerical analysis of weld pool shape and size is of great significance for selection and optimization of the process parameters in pulsed current plasma arc welding (PAW). In this paper, a mathematical model and re...Numerical analysis of weld pool shape and size is of great significance for selection and optimization of the process parameters in pulsed current plasma arc welding (PAW). In this paper, a mathematical model and relevant algorithm are developed to determine the temperature profiles and weld pool geometry in pulsed current PAW through employing an adaptive heat source model. The volumetric heat source consists of semi-ellipsoid at upper part and a conic body at lower part along the workpiece thickness direction. The dynamic variation features of weld pool shape during a pulse cycle are numerically simulated. The calculated weld cross-section is consistent with the measure one.展开更多
A novel synergetic arc control method was used to control twin-electrode alternating current ( AC) to direct current (DC) pulsed arc welding and the mechanism of poor sidewall fusion in narrow gap welding was inve...A novel synergetic arc control method was used to control twin-electrode alternating current ( AC) to direct current (DC) pulsed arc welding and the mechanism of poor sidewall fusion in narrow gap welding was investigated. The synergetic arc control method easured that the arc voltage of DC welding source could switch in phase with the AC welding source. To test the reliability and operability of this method, a twin-electrode AC to DC pulsed arc welding system was set up and data was acquired through high-speed photography and electrical signal measurement system. The results show that the interactions between the two arcs can be controlled effectively and the control method is a sensitive and efficient control method.展开更多
文摘The selection of process parameter in the gas tungsten arc (GTA) welding of titanium alloy was presented for obtaining optimum grain size and hardness. Titanium alloy (Ti-6Al-4V) is one of the most important non-ferrous metals which offers great potential application in aerospace, biomedical and chemical industries, because of its low density (4.5 g/cm^3), excellent corrosion resistance, high strength, attractive fracture behaviour and high melting point (1678℃). The preferred welding process for titanium alloy is frequent GTA welding due to its comparatively easier applicability and better economy. In the case of single pass (GTA) welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one needs to carefully balance various pulse current parameters to reach an optimum combination. Four factors, five level, central composite, rotatable design matrix were used to optimize the required number of experimental conditions. Mathematical models were developed to predict the fusion zone grain size using analysis of variance (ANOVA) and regression analysis. The developed models were optimized using the traditional Hooke and Jeeve's algorithm. Experimental results were provided to illustrate the proposed approach.
文摘The tenacity of heat-affected zone (HAZ) will decline and the size of grains will increase, because of the overheating on HAZ when submerged are welding (SAW) is ased to thick plate with high heat input. The shaping will worsen when SAW is used to thin plate with high current at high speed. A new SAW technology, the pulsed direct current (DC) automatic SAW, will be put forward in this paper in order to overcome the above shortcomings. And a pulsed controller with micro-controller unit (MCU) as the core, nixie tube (NT) and keyboard as the man-machine conversation interface is developed. The main functions of the pulsed controller include the output of pulsed welding current and the working with twinwire. The research has widely prospects in application with significant meanings in theory and practical engineering.
文摘Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all hardware circuit, arc voltage during peak current stage is sampled and integrated to indicate arc length, deviation of arc length and adjusting parameters are calculated and output to drive a step motor directly. According to the features of welding image grabbed with CCD camera, a special algorithm was developed to detect the central line of weld fast and accurately. Then an application system were established, whose static arc length error is ±0.1 mm with 20 A average current and 1 mm given arc length, static detection precision of weld is 0.01 mm , processing time of each image is less than 120 ms . Precision pulse TIG welding of some given thin stainless steel components with complicated curved surface was successfully realized.
文摘The inner hole parts played an oriented or supporting role in engineering machinery and equipment,which are prone to appear surface damages such as wear,strain and corrosion. The precise pulse plasma arc powder welding method is used for surface damage repairing of inner hole parts in this paper. The working principle and process of the technology are illustrated,and the microstructure and property of repairing layer by precise pulse plasma powder welding and CO2 gas shielded welding are tested and observed by microscope,micro hardness tester and X-ray residual stress tester etc. Results showed that the substrate deformation of thin-walled inner hole parts samples by precise pulse plasma powder welding is relatively small. The repair layer and substrate is metallurgical bonding,the transition zones( including fusion zone and heat affected zone) are relatively narrow and the welding quality is good. It showed that the thin-walled inner hole parts can be repaired by this technology and equipment.
文摘An empirical relationship to predict tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy was developed. Incorporating process parameters such as peak current, base current, pulse frequency and pulse on time were studied. The experiments were conducted based on a four-factor, five-level, central composite design matrix. The developed empirical relationship can be effectively used to predict the tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy joints at 95% confidence level. The results indicate that pulse frequency has the greatest influence on tensile strength, followed by peak current, pulse on time and base current.
文摘In this paper the processes of melting and transfer of an electrode metal to the molten pool, hydrody- namics of molten pool in controlled pulsed arc welding in carbon dioxide have been investigated.The process of pulsed arc welding with systematic short - circuits of the arc gap is realized by adaptive algo- rithms of pulsed control over main energetic parameters of welding - arc current and voltage,arc heated efficiency,peak,short - circuiting current, which provide the dosage of energy for energy for melting and transfer of every for of an electrode metal, the control over fluidity of the weld pool. Physica and mathematical models describing such processes in CO2, origind software hare been developed.The re- sults of physical simulation and mathemaical modelling permit to determine the influence of energetic parameters of the process on the condition of the 'power source-electrode-arc-molten pool' electrodynamic system at each moment of time.
文摘Bring forward a new analytical method in order to evaluate the stability of the process of aluminum alloy pulsed MIG welding. The ratio of the first and the second peak in arc voltage signal probability density was selected to evaluate aluminum alloy pulse MIG welding stability. By calculating the arc voltage signal probability density from 80 sets of welding experiments, the ratio of the two peaks in arc voltage probability in every set was captured. And the evaluation system of aluminum alloy pulse MIG welding stability was established. The smaller the ratio of peaks in arc voltage signal probability density is, the better the stability of the welding will be;the bigger the ratio of peaks in arc voltage signal probability density is, the poorer the stability of the welding will be.
文摘The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative study of similar nature has also been carried out during flux-cored arc weld deposition in globular and spray transfer modes.The effect of pulse parameters has been studied by considering their mean current and arc voltage.The arc characteristics studied by its root diameter,projected diameter and length,and the behavior of metal transfer noted by the metal transfer model and the droplet diameter have been found to vary significantly with the pulse parameters.The observation may help in understanding the arc characteristics with respect to the variation in pulse parameters which may be beneficial in using pulse current FCAW to produce desired weld quality.
基金Supported by National Natural Science Foundation of China ( No50375054)China Postdoctoral Science Foundation ( No20060400745)
文摘A digital control of pulsed gas metal arc welding inverter was proposed. A control system consisting of analogue parts was replaced with a new digital control implemented in a TMS320LF2407A DSP chip. The design and constructional features of the whole digital control were presented. The resources of the DSP chip were efficiently utilized and the circuits are very concise, which can enhance the stability and reliability of welding inverter. Experimental results demonstrate that the developed digital control has the ability to accomplish the excellent pulsed gas metal arc welding process and the merits of the developed digital control are stable welding process, little spatter and perfect weld appearance.
基金Project(50540420570) supported by the National Natural Science Foundation of ChinaProject(07-12-002) supported by the Innovative Conception Fund of the Welding Institution of Chinese Mechanical Engineering Society
文摘According to the strategy of controlled pulse key-holing,a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding(PAW). Through sensing and processing the efflux plasma voltage signals,the quantitative relationship among the welding current,efflux plasma voltage and backside weld width of the weld was established. PAW experiments show that the efflux plasma voltage can reflect the state of keyhole and backside weld width accurately. The closed-loop control tests validate the stability and reliability of the developed keyhole PAW system.
基金National Natural Science Foundation of China (No 59975068) Natural Science Foundation of Tianjin (No993602911)
文摘A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0—50 A is applied in pulsed TIG welding. The simulation model converted from the mathematical model is run in MATLAB environment, and the discussion is focused on the way the peak current ranging from 29 A to 50 A and the time constant of arc in the span of 0.003—0.006 s influence the simulating results and the dynamic characteristic. The simulating data are close to that of welding experiments and correspond to the theoretical conclusion.
文摘Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aerospace and petroleum industry. In the present paper an attempt is made to study various weld quality characteristics like weld bead geometry dimensions, micro hardness, microstructure, grain size and tensile properties of Pulsed Current Micro Plasma Welding of Inconel625sheets. Weld joint was prepared by fusing the two parent metals of Inconel625 sheets. Square butt joint is used and welding was carried out using Pulsed DCEN, without filler wire. Peak current, back current, pulse and pulse width are considered as the main influential input variables during the welding.
文摘Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aerospace and petroleum industry. Micro Plasma Arc Welding (MPAW) is one of the important arc welding processes commonly using in fabric- cation of Nickel alloys. In the present paper welding of Inconel 625 sheets using pulsed current micro plasma arc weld- ing was discussed. The paper mainly focuses on studying the weld quality characteristics like weld pool geometry pa- rameters, microstructure, grain size, hardness and tensile properties of Pulsed Current Micro Plasma Arc Welded In- conel 625 sheets at different welding speeds. Results reveals that at a welding speed of 260 mm/minute better weld quality characteristics can be obtained.
基金Naval Research Board (NRB),Ministry of Defence,New Delhi for the financial support to carry out this investigation through sponsored project No.DNRD/05/4003/NRB/67.
文摘Though the preferred welding process to weld aluminium alloy is frequently constant current gas tungsten arc welding (CCGTAW),it resulted in grain coarsening at the fusion zone and heat affected zone(HAZ).Hence,pulsed current gas tungsten arc welding(PCGTAW) was performed,to yield finer fusion zone grains,which leads to higher strength of AA6061 (Al-Mg-Si) aluminium alloy joints.In order to determine the most influential control factors which will yield minimum fusion zone grain size and maximum tensile strength of the joints,the traditional Hooke and Jeeves pattern search method was used.The experiments were carried out based on central composite design with 31 runs and an algorithm was developed to optimize the fusion zone grain size and the tensile strength of pulsed current gas tungsten arc welded AA6061 aluminium alloy joints.The results indicate that the peak current (Ip) and base current (IB) are the most significant parameters,to decide the fusion zone grain size and the tensile strength of the AA6061 aluminum alloy joints.
基金supported by National Natural Science Foundation of China(Grant No. 50936003)
文摘The development of closed-loop control systems is one of the most effective ways to improve the stability of the keyhole status during keyhole plasma arc welding (K-PAW). Due to the disadvantages of the "one-pulse-one-keyhole" technology based on the conventional square current waveform, the controlled pulse welding current waveform is newly applied to control the keyhole open and close periodically. In order to realize the real-time control on the keyhole behavior with this advanced current waveform, welding experiments and system identification are conducted based on the classical control theory. One complete welding cycle can be divided into 3 periods. The keyhole establishing time is the most important time variable, which determines the keyhole behavior and welding process stability. At the same time, the averaged effiux plasma arc voltage during one pulse cycle can reflect the real keyhole dimension and status in a real-time manner. Therefore, two single-input-single-output (SISO) systems are proposed, in which keyhole establishing time and keyhole average dimension are taken as the system controlled variables respectively. Welding experiments are designed with the peak current varying randomly. Experiments show that the keyhole establishing time changes in an opposite direction to the varied peak current, and the averaged efflux plasma arc voltage varies with the same trend as the peak current. Based on the least squares technique and F test of classical system identification, second order difference equation for keyhole establishing time/peak current system and first order difference equation for keyhole average dimension/peak current system are obtained. It is proved that the calculated data by the two mathematical expressions are well matched with the measured data. The proposed research provides mathematical expressions and theoretical analysis to develop closed-loop systems for the controlled pulse K-PAW.
文摘The interfacial reaction control of SiC_p/2124Al composites was investigated during pulsed argon arc welding. Meanwhile, the mechanical properties, the metallographic structure and interfacial microstructure of the induced welding joint were tested and detected, respectively. The results reveal that the joint with excellent properties could be achieved by the proper selection of the special filling material and the addition of the pulse during welding. Moreover, the formation mechanism of the welding joint was discussed and the corresponding measures on further improving the quality of the welding joint of SiC_p/2124Al composites were put forward in the condition of pulsed argon arc welding.
文摘Based on the characteristics of "one keyhole in a pulse" in pulsed current plasma arc welding (PAW) , the transient variation process of weld pool in a pulse cycle is simulated through the establishment of corresponding heat source model. And considering the effects of gravitational force, plasma arc pressure and surface tension on the weld pool surface, the dynamic change features of the keyhole shape in a pulse cycle are calculated by using surface deformation equation. Experiments are conducted and validate that the calctdated weld fusion line is in good agreement with the experimental results.
基金The authors are grateful to the financial support for this research from the National Natural Science Foundation of China ( Key Pro- gram Grant No. 50936003 ).
文摘Numerical analysis of weld pool shape and size is of great significance for selection and optimization of the process parameters in pulsed current plasma arc welding (PAW). In this paper, a mathematical model and relevant algorithm are developed to determine the temperature profiles and weld pool geometry in pulsed current PAW through employing an adaptive heat source model. The volumetric heat source consists of semi-ellipsoid at upper part and a conic body at lower part along the workpiece thickness direction. The dynamic variation features of weld pool shape during a pulse cycle are numerically simulated. The calculated weld cross-section is consistent with the measure one.
基金Supported by National Natural Science Foundation of China (Grant No. 51175374), the Application of Basic & Frontier Technology Program of Tianjin (Grant No. 09JCYBJC05000) and the Science & Technology Pillar Program of Tianjin( Grant No. 10ZCKFSF00200).
文摘A novel synergetic arc control method was used to control twin-electrode alternating current ( AC) to direct current (DC) pulsed arc welding and the mechanism of poor sidewall fusion in narrow gap welding was investigated. The synergetic arc control method easured that the arc voltage of DC welding source could switch in phase with the AC welding source. To test the reliability and operability of this method, a twin-electrode AC to DC pulsed arc welding system was set up and data was acquired through high-speed photography and electrical signal measurement system. The results show that the interactions between the two arcs can be controlled effectively and the control method is a sensitive and efficient control method.