Based on the pulse-shaping unit in the front end of high-power laser facilities,we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivat...Based on the pulse-shaping unit in the front end of high-power laser facilities,we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivative adaptive smoothing filter for smooth pulse recovery,so as to effectively restrain the influence of electrical noise and FM-to-AM modulation in the time–power curve,and enhance the calibration accuracy of the pulse shape in the feedback control system.The related simulation and experiment results show that the proposed scheme can obtain a better shaping effect on the high-contrast temporal shape in comparison with the cumulative average algorithm and orthogonal matching pursuit algorithm combined with a traditional smoothing filter.The implementation of the hybrid scheme mechanism increased the signal-to-noise ratio of the laser pulse from about 11 dB to 30 dB,and the filtered pulse is smooth without modulation,with smoothness of about 98.8%.展开更多
Pulse signal recovery is to extract useful amplitude and time information from the pulse signal contaminated by noise. It is a great challenge to precisely recover the pulse signal in loud background noise. The conven...Pulse signal recovery is to extract useful amplitude and time information from the pulse signal contaminated by noise. It is a great challenge to precisely recover the pulse signal in loud background noise. The conventional approaches,which are mostly based on the distribution of the pulse energy spectrum,do not well determine the locations and shapes of the pulses. In this paper,we propose a time domain method to reconstruct pulse signals. In the proposed approach,a sparse representation model is established to deal with the issue of the pulse signal recovery under noise conditions. The corresponding problem based on the sparse optimization model is solved by a matching pursuit algorithm. Simulations and experiments validate the effectiveness of the proposed approach on pulse signal recovery.展开更多
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA25020303).
文摘Based on the pulse-shaping unit in the front end of high-power laser facilities,we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivative adaptive smoothing filter for smooth pulse recovery,so as to effectively restrain the influence of electrical noise and FM-to-AM modulation in the time–power curve,and enhance the calibration accuracy of the pulse shape in the feedback control system.The related simulation and experiment results show that the proposed scheme can obtain a better shaping effect on the high-contrast temporal shape in comparison with the cumulative average algorithm and orthogonal matching pursuit algorithm combined with a traditional smoothing filter.The implementation of the hybrid scheme mechanism increased the signal-to-noise ratio of the laser pulse from about 11 dB to 30 dB,and the filtered pulse is smooth without modulation,with smoothness of about 98.8%.
基金Supported by the National Natural Science Foundation of China(61501385)Science and Technology Planning Project of Sichuan Province,China(2016JY0242,2016GZ0210)Foundation of Southwest University of Science and Technology(15kftk02,15kffk01)
文摘Pulse signal recovery is to extract useful amplitude and time information from the pulse signal contaminated by noise. It is a great challenge to precisely recover the pulse signal in loud background noise. The conventional approaches,which are mostly based on the distribution of the pulse energy spectrum,do not well determine the locations and shapes of the pulses. In this paper,we propose a time domain method to reconstruct pulse signals. In the proposed approach,a sparse representation model is established to deal with the issue of the pulse signal recovery under noise conditions. The corresponding problem based on the sparse optimization model is solved by a matching pursuit algorithm. Simulations and experiments validate the effectiveness of the proposed approach on pulse signal recovery.